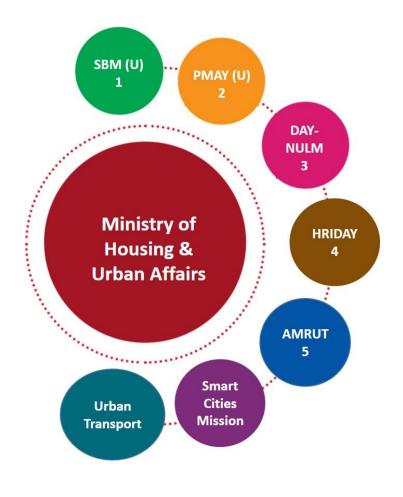


Innovative Construction Technologies & Thermal Comfort for Affordable Housing

RESILIENT, AFFORDABLE AND COMFORTABLE HOUSING THROUGH NATIONAL ACTION

Prepared by Climate Smart Building (CSB) Cell, North Cluster, LHP Lucknow



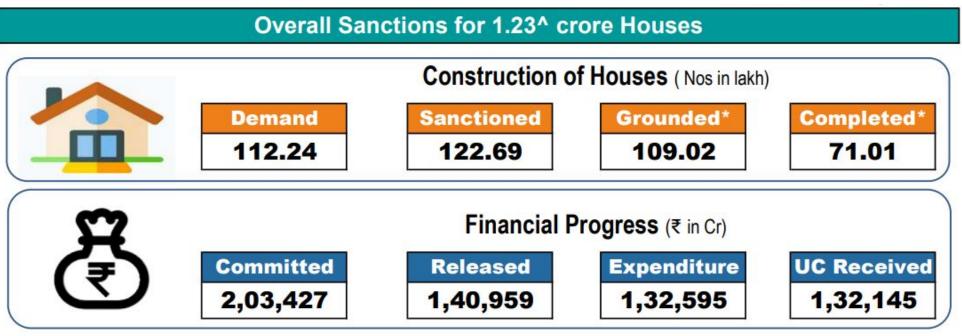
- **Ministry of Housing and Urban Affairs (MoHUA)** is the supreme authority of the Government of India to formulate and monitor all the programmes concerning the housing and urban development of the country.
- The Ministry of Housing and Urban Affairs (MoHUA)
 through its flagship mission Pradhan Mantri Awas
 Yojna-Urban (PMAY-U) ensures a pucca house to all eligible
 urban households.
- PMAY-U aims to achieve Urban Development through Transformation, Innovation and Sustainable Inclusions.

bmipc

Deutsche Gesellschaft

4. Heritage Cities Development and Augmentation Yojana, 5. Atal Mission for Rejuvenation and Urban

^{1.} Swachh Bharat Mission- Urban, 2. Pradhan Mantri Awas Yojana- Urban, 3. Deendayal Antyodaya Yojana- National Urban Livelihood Mission,



INTRODUCTION – MINISTRY OF HOUSING & URBAN AFFAIRS (MOHUA)-PMAY

- Due to Rapid increase in urbanization and believing it as an opportunity to reduce poverty.
- For addressing the huge housing demand in the Affordable Sector, Govt. of India launched **Pradhan Mantri**

Awas Yojana-Urban in June 2015.

PMAY (U) Achievement (provisional), as on 28th February 2023

16 lakh houses are being constructed using New Technologies

Source: PMAY Website

INTRODUCTION- GLOBAL HOUSING TECHNOLOGY CHALLENGE (GHTC-INDIA)

- The Ministry of Housing and Urban Affairs, Government of India has conceptualized a Global Housing Technology Challenge India (GHTC- India).
- To identify and mainstream a basket of innovative technologies from across the globe that are sustainable and disaster-resilient.
- Such technologies would be cost effective, speedier and ensure a higher quality of construction of houses, meeting diverse geo-climatic conditions and desired functional needs.
- A Technology Sub-Mission (TSM) has been set up.

COMPONENTS OF GLOBAL HOUSING TECHNOLOGY CHALLENGE (GHTC-INDIA)

Construction Technology India: Grand Expo-Cum-Conference

- Promotion of Innovative Construction Technology
- Platform to Facilitate Signing of MoUs and form Potential Partnerships.
- Technical Evaluation, Exchange of Knowledge, and business.
- Exhibition of Technologies

Proven Demonstrable Technologies

- Onboard States & Local Support Partners
- Six Light House Project Sites
- Induct Established Proven technologies across the Globe
- Identify Basket of Site-specific Technologies
- Different Technology for Each Site
- Live Laboratories for learning
- Technology to be Adopted in Curriculum and India System

Potential Future Technologies

- Setting up ASHA- India (Affordable Sustainable Housing Accelerators)
- Support Domestic Technologies by Product Development, Mentoring & Market Support
- Incubation Centres in IITs
- Organizing Periodic Accelerator
 Workshops

EVENTS OF GLOBAL HOUSING TECHNOLOGY CHALLENGE (GHTC-INDIA)

Construction Technology India (CTI) – 2019 Expo-cum-Conference, on 2nd to 3rd March 2019, Vigyan Bhawan, New Delhi.

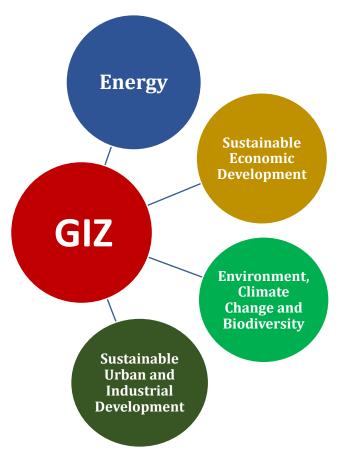
Indian Housing Technology Mela (IHTM) on 5th to 7th October 2021 in Lucknow, Uttar Pradesh.

Indian Urban Housing Conclave (IUHC)-2022, on 19th to 21st October 2022, in Rajkot, Gujrat.

GHTC- SHORTLISTED TECHNOLOGIES

• 54 proven technologies were shortlisted suiting different climatic zone conditions in the CTI conference in 2019.

Broad Category	Technologies (Nos.)
Precast Concrete Construction System - 3D Precast volumetric	4
Precast Concrete Construction System – Precast components assembled at site	8
Light Gauge Steel Structural System & Pre-engineered Steel Structural System	16
Prefabricated Sandwich Panel System	9
Monolithic Concrete Construction	9
Stay In Place Formwork System	8
Total	54



INTRODUCTION – GIZ AND IGEN (INDO GERMAN ENERGY PROGRAM)

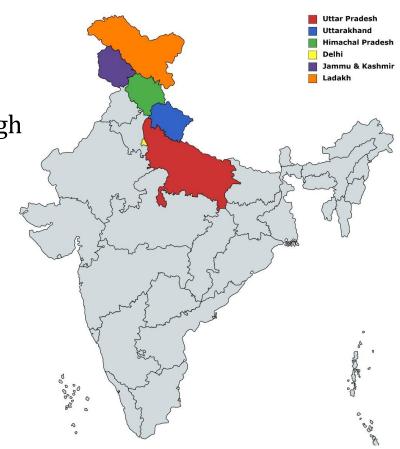
- GIZ is an international cooperation enterprise for sustainable development which operates worldwide, on a public benefit basis.
- For over 60 Years, **GIZ** has been working jointly with partners in India for sustainable economic, ecological, and social development.
- The Government of the Republic of India and the Federal Republic of Germany under the Indo-German Technical Cooperation, agreed to jointly promote the "Indo-German Energy Programme" (IGEN) with the aim to foster sustainability in the built environment through GIZ.

INTRODUCTION – CLIMATE SMART BUILDINGS PROGRAMME

The Ministry of Housing and Urban Affairs (MoHUA) aims to enhance climate resilience and thermal comfort in the affordable housing segment through GIZ under Indo German Energy programme (IGEN)'s programme, **Climate Smart Buildings (CSB)**.

Aim:

- Adopting sustainable and low-impact design.
- Adoption of best available Materials and construction technologies.
- Use of innovative technologies to provide desired thermal comfort for mass replication.

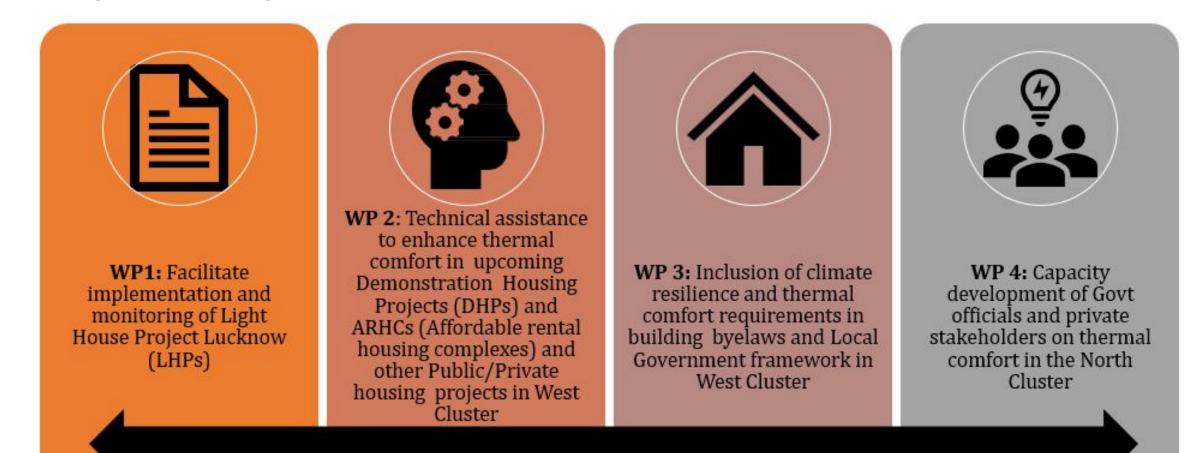

INTRODUCTION: CLIMATE SMART BUILDINGS CELL-NORTH CLUSTER

• Climate Smart Buildings Cluster cells are established in each of the six Light House Project states where pilot affordable housing projects are being built utilizing innovative construction technologies.

Goal:

To improve climate resilience and thermal comfort in buildings through

- Passive Measures
- Locally sustainable Materials
- Low embodied energy materials
- Best available technology



OBJECTIVES: CLIMATE SMART BUILDINGS CELL, NORTH CLUSTER

In the direction to achieve the goal of sustainability and thermal comfort in affordable housing, CSB Cell is working with following objectives:

Handbook: Innovative Construction Technologies & Thermal Comfort in Affordable Housing

- A Handbook for training programs on innovative construction technologies & Thermal comfort in Affordable housing was curated and launched by the **Hon'ble Prime Minister** at the Indian Urban Housing Conclave in Rajkot on 19th October 2022.
- To disseminate the knowledge in this handbook, Ministry of Housing and Urban Affairs is launching a seconds set of training i.e. **RACHNA2.0**, from Dec 2022 till Mar 2023.

Handbook: Innovative Construction Technologies & Thermal Comfort in Affordable Housing

CONTENTS

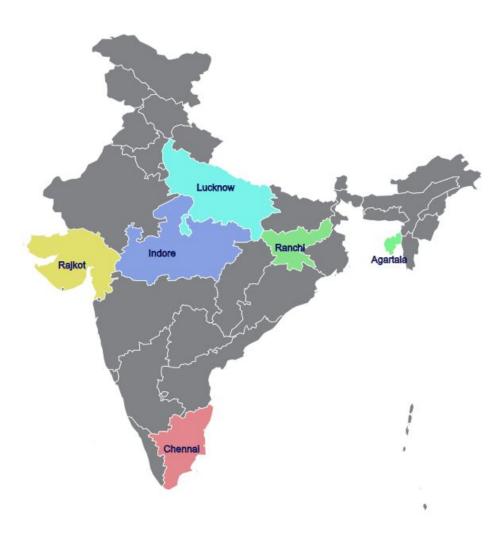
1. Importance of Thermal Comfort	1
1.1 Introduction	
1.2 Thermal comfort and cooling demand	
1.3 Contemporary approaches	
1.4 Factors affecting thermal comfort	
2. Building Physics affecting Thermal Comfort	
2.1 Introduction	
2.2 Factors Influencing Heat Transfer	
2.3 Energy and Heat	
2.4 Laws of Thermodynamics	
2.6 Outdoor Climate and Heat Transfer	
2.5 Modes of Heat Transfer	
2.7 Climate Zones of India	
2.8 Influences on various modes of heat transfer	
2.9 Metrics that Matter	
3. Fundamentals of Thermal Comfort	
3.1 Introduction	
3.2 Thermal Comfort Metrics	
3.3 Heat Balance Method	
3.4 Adaptive Thermal Comfort Method	
3.5 Local Thermal Discomfort	
4. Affordable Housing Passive Design Strategies	61
4.1 Introduction	
4.2 Initial Strategies	
4.3 Role of ventilation	
4.4 Case Study- The Blessing House, Auroville, India	
5. Innovative building materials and new methods of construction fo	T
affordable Housing	
5.1 Introduction	
5.2 Walling Materials and Units	
5.3 Walling Technologies	
5.4 Glazing Materials and Glazing Assemblies	
5.5 Roofing Coating Materials	
5.6 Light House Projects (LHP)	
6. Building Codes, Affordable Housing and Thermal Comfort	119

Building Codes, Affordable Housing and Thermal Comfort	
6.1 Introduction	
6.2 Context	
6.3 Eco Niwas Samhita	
6.4 Code Provisions	
6.5 ENS Compliance Tool	

7. Case Studies for Application of Thermal Comfort in Affordable	Housing 137
7.1 Introduction	
7.2 Vernacular Buildings of North-East India	
7.3 Pol Houses and Conventional Houses in Ahmedabad	
7.4 Rajkot Smart GHAR III	
7.5 Code Compliant Housing	
8. Thermal Comfort Study Methods	
8.1 Introduction	
8.1 Introduction 8.2 Study Environments	
8.3 Statistical Analysis 8.4 Reference Documents	
8.4 Reference Documents	
9. Low Energy Cooling Technologies and Comfort	177
9.1 Introduction	
9.2 Categories of Low energy cooling systems	
9.3. Rating Steps and Standards	
9.4. Case Studies	198
10. Quiz	<mark>201</mark>
11. Bibliography	211
Annexure I: Sample ENS Compliance Report	

SESSION-1

- Innovative Construction Technologies of Light House Technologies, LHP Study and Observations.
- 1. LHPs Construction Technologies
- 2. Thermal Comfort Analysis and Recommendations on LHPs and Assisted Demo Projects.
- 3. Life Cycle Cost Analysis and its Impact in Carbon Emission.
- 4. Q&A on New & Innovative technologies and Thermal Comfort.



CONCEPT OF LIGHT HOUSE PROJECTS (LHPS)

Ministry of Housing and Urban Affairs Under PMAY(U), set up a

Technology Sub-Mission (TSM) to provide:

- Alternative sustainable technological solutions.
- Better, Faster & cost-effective construction methodologies.
- Houses suiting to geo-climatic and hazard conditions of the country.
- Light House Projects have been conceptualized as part of Global Housing Technology Challenge India (GHTC-India)
- Construction of six **LHPs** with allied infrastructure and six categories of globally proven innovative technologies were

CONCEPT OF LIGHT HOUSE PROJECTS (LHPS)

• The fundamental concept of the Light-House Projects is to encourage large-scale participation of the people of India for mainstreaming the proven technologies identified globally by the principles.

THE LIGHT-HOUSE PROJECTS (LHP) IN INDIA

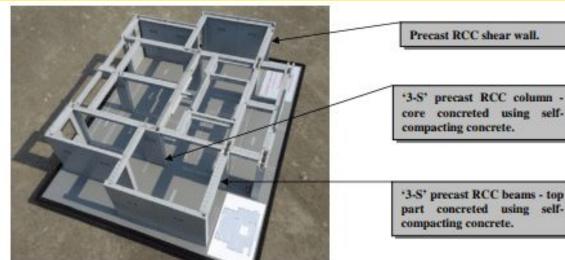
Hon'ble Prime Minister Shri Narendra Modi laid the foundation stone of six Light House Projects (LHPs) each consisting of approx. 1000 houses in January 2021, in six cities :

LHP CHENNAI-INAUGRATION (26TH MAY 2022)

LHP CHENNAI-PRECAST CONCRETE CONSTRUCTION SYSTEM ASSEMBLED AT SITE

- Precast dense reinforced cement concrete hollow core columns and RCC shear walls is being used as structure .
- AAC blocks in partition walls are being used.
- Dowel bars, continuity reinforcement placed at connections.
- Self-compacting concrete is being used in hollow cores of columns.

Plinth with dowels


Precast Column Erection

Precast Slab work

AAC Block work

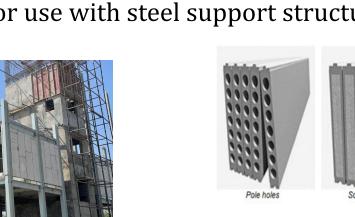
LHP RAJKOT- INAUGRATION (19TH October 2022)

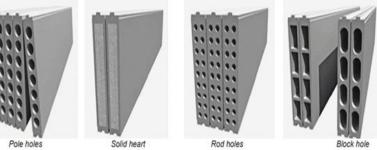
LHP RAJKOT- MONOLITHIC CONCRETE CONSTRUCTION USING TUNNEL FORMWORK

- Customized engineering formwork replacing conventional steel or plywood shuttering systems.
- Mechanized system for cellular structures.
- Two half shells which are placed together to form a room or cell.
- Walls and slab are cast in a single day.
- The formwork is stripped the next day for subsequent phase.

Tunnel formwork panel slab and wall casting

Building Using Tunnel Formwork





LHP INDORE-PREFABRICATED SANDWICH PANEL SYSTEM

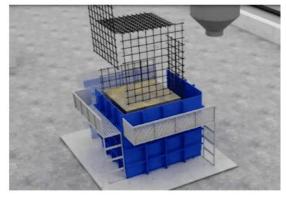
- Lightweight composite wall, floor and roof sandwich panels made of thin fil cement or calcium silicate board as face covered boards.
- Core material is EPS granule balls, adhesive, cement, sand, fly ash and ot bonding materials in mortar form.
- The core material in slurry state is pushed under pressure into pre-set moulds.
- Once set, it shall be moved for curing and ready for use with steel support structure

Types of Prefabricated Sandwich Panels

Prefabricated EPS Sandwich Panel

LHP RANCHI- PRECAST CONCRETE CONSTRUCTION SYSTEM – 3D VOLUMETRIC

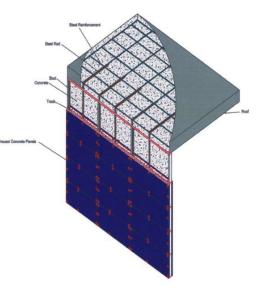
- Components like room, Bathroom, Kitchen etc. are cast monolithically in Plant or Casting yard in a controlled condition.
- Magic Pods (Precast Components) are transported, erected & installed using cranes.
- Prestressed slabs are installed as flooring elements.
- Consecutive floors are built in similar manner to complete the structure.

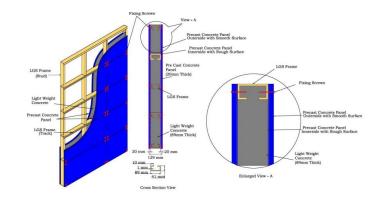


Transportation of Magic Pods

Construction and installation

Pre Casting of building modules




LHP AGARTALA- LIGHT GAUGE STEEL FRAMED STRUCTURE WITH INFILL CONCRETE PANELS (LGSFS-ICP)

- Light Gauge Steel Framed Structure with Infill Concrete Panels (LGSFS-ICP) Technology.
- Factory made Light Gauge Steel Framed Structure (LGSFS), light weight concrete and precast panels are being used.

Precast concrete panels

Light Gauge Steel Frame Structure

Structural Details of LGSFS-Infill Concrete Wall

Assembly of LGS Frames and Construction of Wall

LHP LUCKNOW-PROJECT OVERVIEW

Project Brief

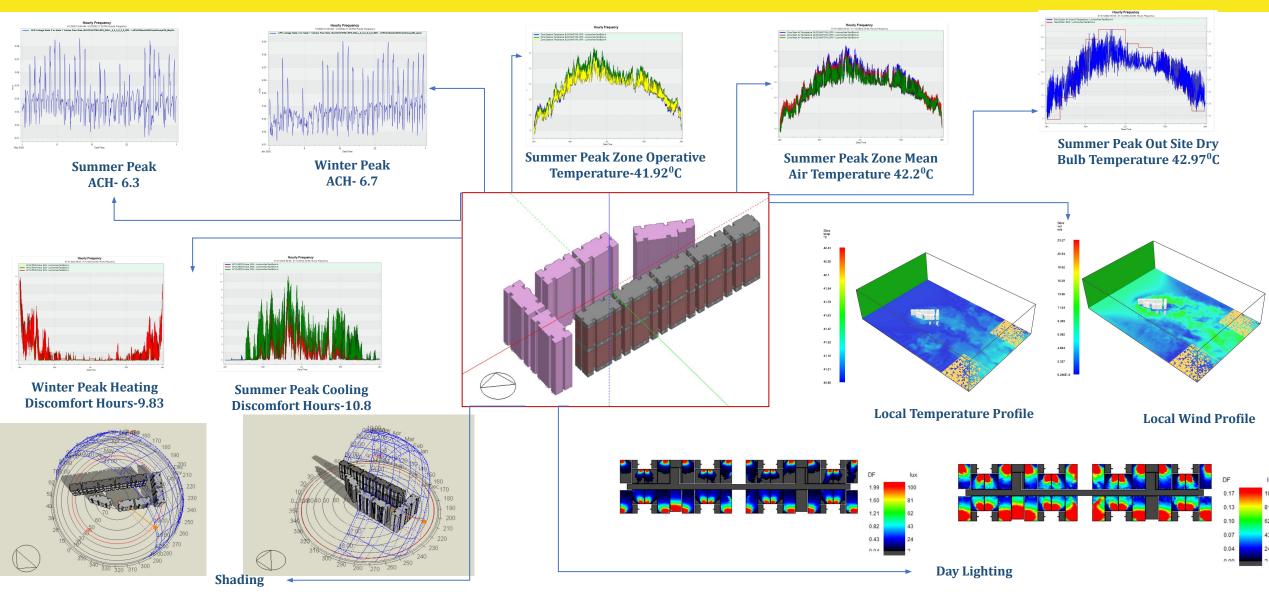
Location of ProjectAvadh Vihar, Lucknow, U.P.No. of DUs1,040 (S+13)Plot area20,036 sq.mt.Carpet area of each DU34.51 sq.mt.Total built up area48,702 sq.mt.Technology being usedStay In Place Formwork System with pre-engineered steel structural systemOther provisionsCommunity Centre, ShopsFoundationFoundationRCC raft foundationStructural FramePre-engineered steel structural frameWallingStay In Place PVC Formwork SystemFloor Slabs/RoofingCast in-situ deck slab		•		
Plot area20,036 sq.mt.Carpet area of each DU34.51 sq.mt.Total built up area48,702 sq.mt.Technology being usedStay In Place Formwork System with pre-engineered steel structural systemOther provisionsCommunity Centre, ShopsFoundationRCC raft foundationStructural FramePre-engineered steel structural frameWallingStay In Place PVC Formwork System	Location of Project	Avadh Vihar, Lucknow, U.P.		
Carpet area of each DU34.51 sq.mt.Total built up area48,702 sq.mt.Technology being usedStay In Place Formwork System with pre-engineered steel structural systemOther provisionsCommunity Centre, ShopsBroad Specifications Broad SpecificationsFoundationRCC raft foundationStructural FramePre-engineered steel structural frameWallingStay In Place PVC Formwork System	No. of DUs	1,040 (S+13)		
Total built up area48,702 sq.mt.Technology being usedStay In Place Formwork System with pre-engineered steel structural systemOther provisionsCommunity Centre, ShopsBroad Specifications Broad SpecificationsFoundationRCC raft foundationStructural FramePre-engineered steel structural frameWallingStay In Place PVC Formwork System	Plot area	20,036 sq.mt.		
Technology being usedStay In Place Formwork System with pre-engineered steel structural systemOther provisionsCommunity Centre, Shops Broat Specifications Broad Specifications FoundationRCC raft foundationStructural FramePre-engineered steel structural frameWallingStay In Place PVC Formwork System	Carpet area of each DU	34.51 sq.mt.		
SystemOther provisionsCommunity Centre, ShopsBroad Specifications Broad SpecificationsFoundationRCC raft foundationStructural FramePre-engineered steel structural frameWallingStay In Place PVC Formwork System	Total built up area	48,702 sq.mt.		
Broad Specifications Broad SpecificationsFoundationRCC raft foundationStructural FramePre-engineered steel structural frameWallingStay In Place PVC Formwork System	Technology being used			
FoundationRCC raft foundationStructural FramePre-engineered steel structural frameWallingStay In Place PVC Formwork System	Other provisions	Community Centre, Shops		
Structural FramePre-engineered steel structural frameWallingStay In Place PVC Formwork System	Broad Specifications Broad Specifications			
Walling Stay In Place PVC Formwork System	Foundation	RCC raft foundation		
	Structural Frame	Pre-engineered steel structural frame		
Floor Slabs/Roofing Cast in-situ deck slab	Walling	Stay In Place PVC Formwork System		
	Floor Slabs/Roofing	Cast in-situ deck slab		

LHP LUCKNOW-PROJECT PLAN

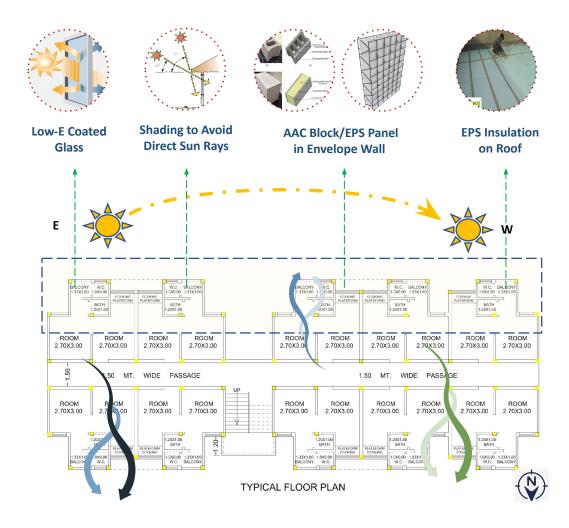
Block Plan

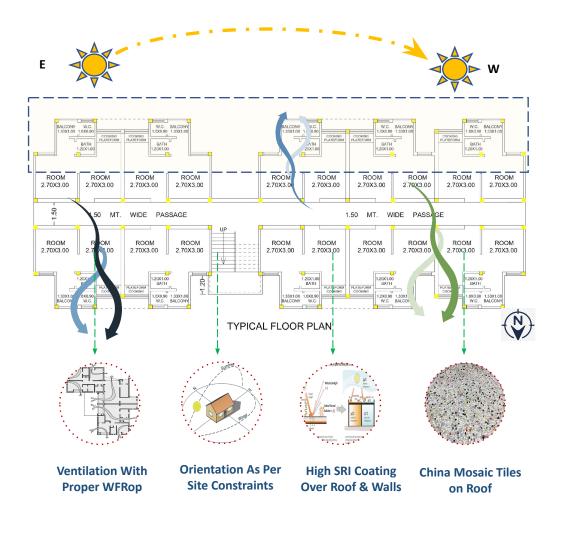
CONSTRUCTION TECHNOLOGY: LHP LUCKNOW

- •Hot Rolled Pre-Engineered Building (PEB) sections act as a structural framework of the building whereas SIP (Stay-in-Place) formwork works as a partition wall.
- •0.9mm Deck Sheet used as slab support component over which concrete is casted for enhancing strength. It reduces casting time, propping, shuttering and centering support.
- •Self-Compacting Concrete is being poured in SIP formwork as an infill to make it more rigid and thermally sound.
- •**Polyvinyl Chloride(PVC)** based polymer components serve as a permanent stay-in-place formwork with infilled **concrete** for building walls



THERMAL PERFORMANCE OF LHP LUCKNOW



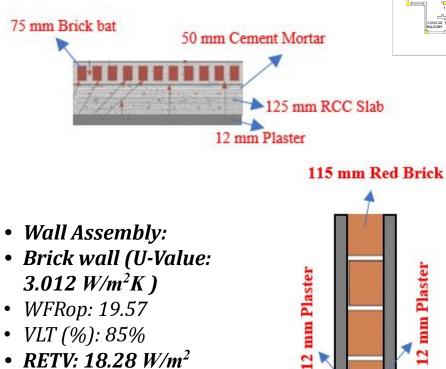


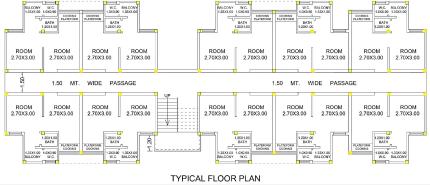
THERMAL COMFORT ANALYSIS-LUKERGANJ, PRAYAGRAJ

Assisted Demo Project Lukerganj, Prayagraj Uttar Pradesh

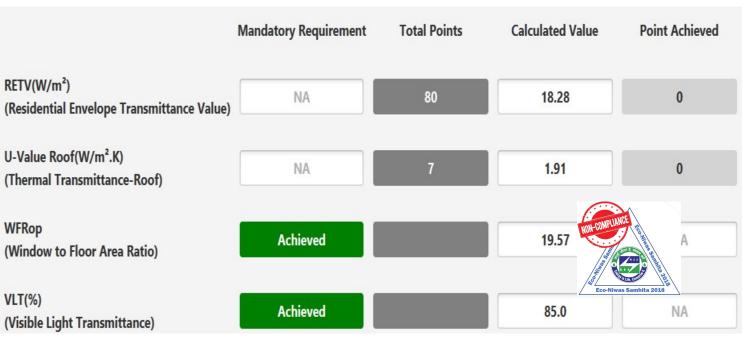
WFRop

VLT(%)

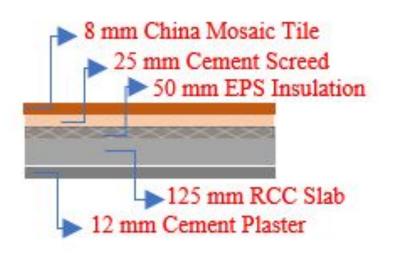


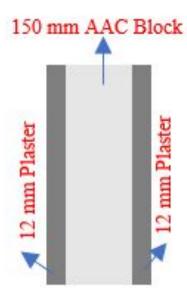


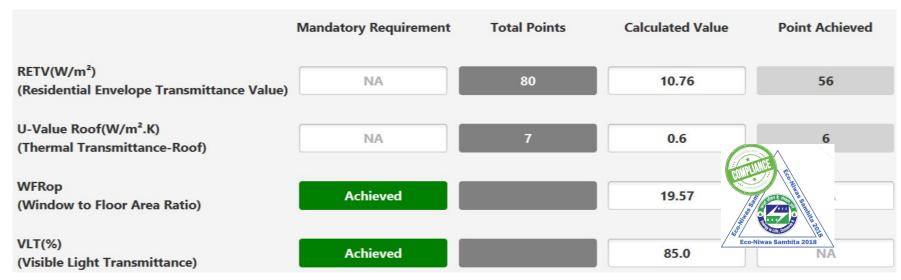
RECOMMENDATIONS TO ENHANCE THERMAL COMFORT (BASE CASE)


Existing Project Details

•Total Plot Area: 1731 m² •No. of DUs: 76 (G+3) (Block-1: 40, Block-2: 36) •Covered Area: 634.8 m² Roof Assembly (U-Value: 1.908 W/m^2K)





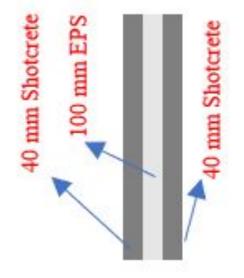

RECOMMENDATIONS TO ENHANCE THERMAL COMFORT (CASE-1)

Wall Assembly: AAC Block Wall
(U-Value: 0.981 W/m²K)
WFRop: 19.57 ENS Compliant
VLT (%): 85% ENS Compliant
RETV: 10.76 W/m² (ENS Compliant)

Roof Assembly (U-Value: 0.602 *W/m²K*)

Roof Assembly

EPS Core Panel

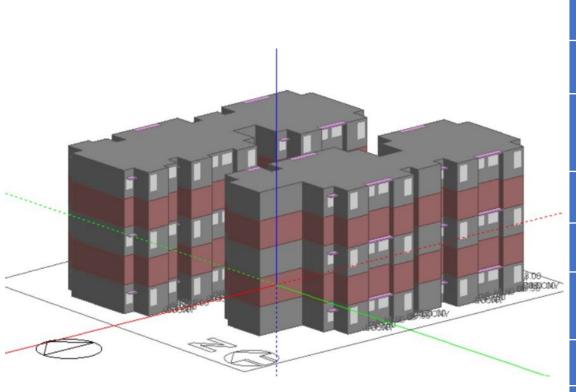

(U-Value: $0.346 W/m^2 K$)

RECOMMENDATIONS TO ENHANCE THERMAL COMFORT (CASE-2)

Wall Assembly:
EPS Core Panel Wall (U-Value: 0.651 W/m²K)
•WFRop: 19.57 ENS Compliant
•VLT (%): 85% ENS Compliant
•RETV: 7.76 W/m² (ENS Compliant)

40 mm Shotcrete 100 mm EPS 40 mm Shotcrete

	Mandatory Requirement	Total Points	Calculated Value	Point Achieved
RETV(W/m²) (Residential Envelope Transmittance Value)	NA	80	7.67	71
U-Value Roof(W/m².K) (Thermal Transmittance-Roof)	NA	7	0.35	7
WFRop (Window to Floor Area Ratio)	Achieved		19.57	
VLT(%) (Visible Light Transmittance)	Achieved		85.0	Viwas Samhita 2018



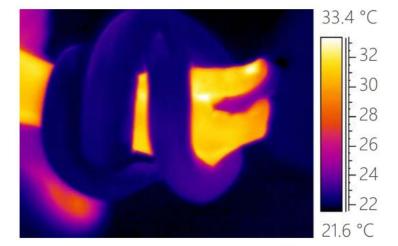
THERMAL COMFORT ANALYSIS AND RECOMMENDATIONS

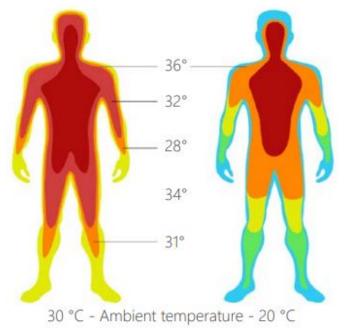
3-D model for thermal comfort analysis

Demo Project-Lukerganj, Prayagraj				
КРІ	Unit	Base Case	Case-1	Case-2
RETV	W/m2	18.28	10.76	7.67
Reduction in Heat Transmittance Through Building Envelope	% Reduction w.r.t. base case	-	41%	58%
Embodied Energy Savings	% Savings w.r.t base case	-	55%	22.8%
Annual Discomfort Hours	Hrs.	3704	3380	3064
Annual Discomfort Hours	% Reduction w.r.t base case	-	8.74%	17.27%
Degree Discomfort Hours	⁰ C.Hrs.	19661	17760	16251
Peak Temperature difference (Summer)	OO	3.75	4.49	5.73
Cost	Rs/DU	539099	552699	579879
Passive Features	Orientation, Shading etc	E-W	E-W	E-W

SESSION-2 Importance of Thermal Comfort

- 1. Thermal comfort and cooling demand
- 2. Factors affecting thermal comfort and cooling demand
- 3. Contemporary approaches
- 4. Thermal comfort metrics

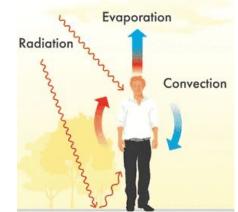


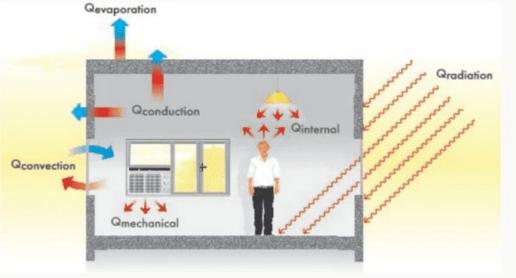


THERMAL COMFORT & ITS IMPORTANCE

Thermal comfort is "the state of mind that expresses satisfaction within the thermal environment" and generally assessed subjectively (ASHRAE, 2004).

- In case of humans, the core body temperature lies in a narrow range around 37° C (ASHRAE, 2021).
- To maintain the body core temperature during varying external temperatures, the human body is constantly acclimatizing itself to its external environmental conditions through exchange of heat between the body and surrounding environment.
- Both core body temperature and skin surface temperature are relevant in understanding thermal comfort.




TRANSFER OF HEAT FROM HUMAN BODY

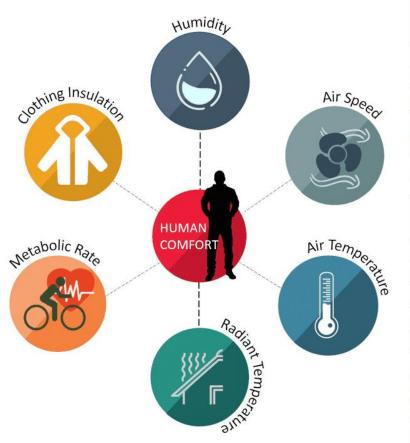
Mode of Heat Transfer

What affects the **Thermal indoor environment?**

- The heat exchange between the human body and its environment occurs mainly in three ways
 - Conduction
 - Convection
 - Radiation
- Thermal indoor environment is affected by both internal and external sources.

Thermal comfort refers to the percieved feeling on the human body as the result of the effect of heat and cold sources in the environment.

FACTORS AFFECTING THERMAL COMFORT


Environmental

Parameters/Factors

- Air Temperature
- Mean Radiant Temperature
- Air Velocity
- Humidity

Personal Parameters/Factors

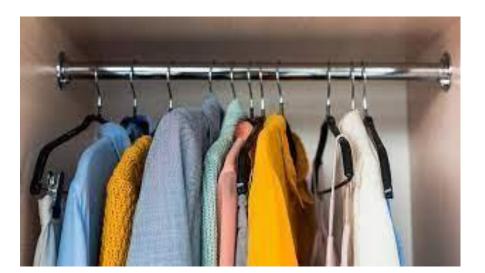
- Clothing Level
- Physical Activity

Body Part	Skin Location	Cold (15 °C)	Neutral (27 °C)	Hot (47 °C)
А	Forehead	31.7	35.2	37
В	Back of Neck	31.2	35.1	36.1
С	Chest	30.1	34.4	35.8
D	Upper Back	30.7	34.4	36.3
E	Lower Back	29.2	33.7	36.6
F	Upper Abdomen	29	33.8	35.7
G	Lower Abdomen	29.2	34.8	36.2
H	Tricep	28	33.2	36.6
J	Forearm	26.9	34	37
L	Hand	23.7	33.8	36.7
M	Hip	26.5	32.2	<mark>36.8</mark>
N	Side thigh	27.3	33	36.5
0	Front thigh	29.4	33.7	36.7
Р	Back thigh	25.5	32.2	36
Q	Calf	25. <mark>1</mark>	31.6	35.9
R	Foot	23.2	<mark>30.4</mark>	36.2

Skin surface temperature at various locations of the body in cold, neutral, and hot indoor environment.

ENVIRONMENTAL FACTORS AFFECTING THERMAL COMFORT

PHYSICAL FACTORSAIR VELOCITYHUMIDITYAIR velocityThe amount of evaporated water in the airThe speed of air moving across the workerAir-conditioning can easily attain ideal relative humidity	AIR TEMPERATURE The temperature of the air surrounding a body The ideal temperature for sedentary work is usually between 20°C and 26°C	RADIANT TEMPERATUREThe heat that radiates from awarm objectHeat can be generated byequipment, which raises thetemperature in a specific region.
between 0.1 and 0.2 m/s. values of 40 percent to 70	The speed of air moving across the worker It's best if the air flow rate is	FACTORS HUMIDITY The amount of evaporated water in the air Air-conditioning can easily attain ideal relative humidity



PERSONAL FACTORS AFFECTING THERMAL COMFORT

CLOTHING LEVEL

Layers of insulating clothing keep a person warm or cause overheating by preventing heat loss. The better the insulating ability of a garment, the thicker it is in general. Air movement and relative humidity can reduce the insulating effectiveness of clothing, depending on the type of material it is constructed of.

METABOLIC RATE

The rate at which chemical energy is converted into heat and mechanical effort by metabolic activities within an organism, commonly measured in units of total body surface area. People have different metabolic rates that can fluctuate due to activity level and environmental conditions.

CLOTHING LEVELS & INSULATION

CLOTHING	Clo
T-shirts, shorts, Light socks, Sandals	0.30
Shirt, Trousers socks, Shoes	0.70
Jacket, Blouse, Long skirt, stockings	1.00
Trousers, Vest, Jacket Coat, Socks Shoes	1.50

METABOLIC RATE FOR HUMAN ACTIVITY AND OCCUPANCY

 $1 M = 1 met = 58.2 W/m^2 = 18.4 Btu/h.ft^2$

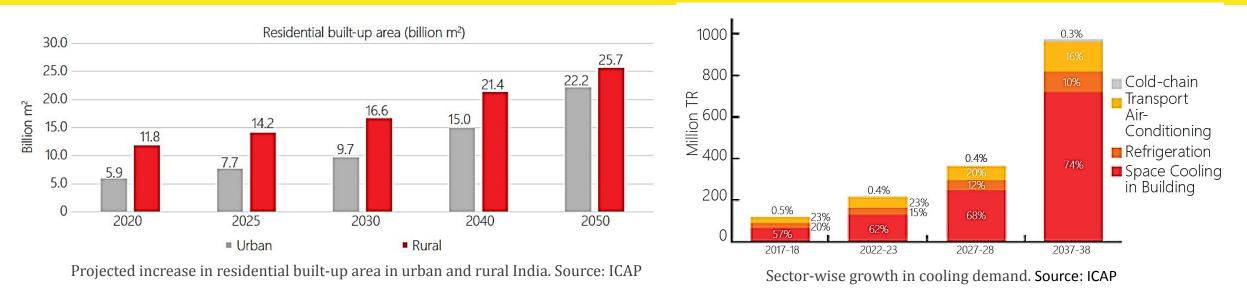
 Table 3.1

 Metabolic Rate M for Various Activities

Activity	met	W/m ²	$Btu/(h \cdot ft^2)$
Sleeping	0.7	40	13
Reclining	0.8	45	15
Seated, quiet	1.0	60	18
Standing, relaxed	1.2	70	22
Walking (0.9 m/s, 3.2 km/hr, 2.0 mph)	2.0	115	37
Walking (1.8 m/s, 6.8 km/h, 4.2 mph)	3.8	220	70
Office- reading, seated	1.0	55	18
Office, walking about	1.7	100	31
House cleaning	2.0-3.4	115-200	37-63
Pick and shovel work	4.0-4.8	235-280	74-88
Dancing, social	2.4-4.4	140-255	44-81
Heavy machine work	4.0	235	74

• Thermal comfort is maintained by

heat mass transfer.


- Human body generates heat about 100w under sedentary condition with body area 1.5 to 2 sqm.
- More layer of clothing = more

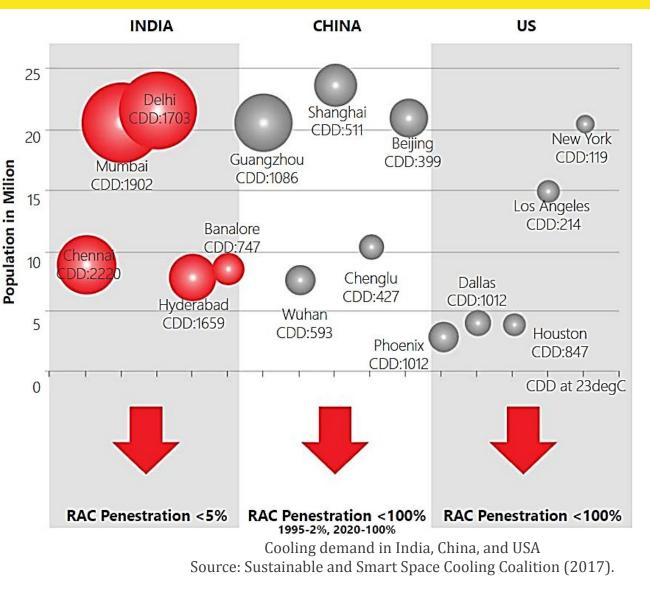
insulation = less heat loss

Source: Courtesy of ASHRAE, Standard 55-2013: Thermal Environmental Conditions for Human Occupancy, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA, 2010. With permission.

FACTORS AFFECTING THERMAL COMFORT & COOLING DEMAND

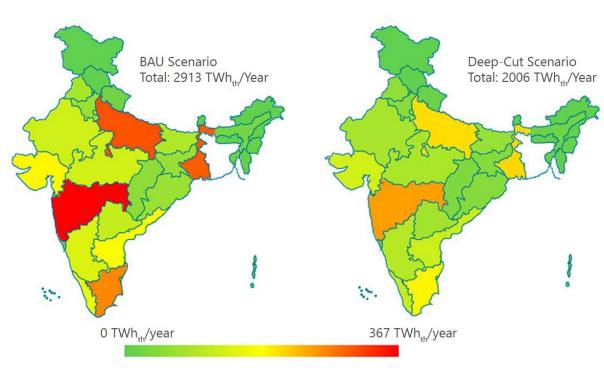
The India Cooling Action Plan sets the following goals to promote sustainable cooling and thermal comfort for all.

- 1. 20-25% reduction of cooling demand across various sectors by 2037-2038
- 2. 25-40% reduction in cooling energy requirements by 2037-2038.
- 3. 25-30% reduction in refrigerant demand by 2037-2038.
- 4. Training and certification of 1,00,000 service technicians by 2022-2023
- 5. Recognizing "cooling and related areas" as a thrust area of research



FACTORS AFFECTING THERMAL COMFORT & COOLING DEMAND

- Major Indian cities have high population and cooling degree days.
- Cooling demand to combat uncomfortable conditions is also high.
- When residential buildings are designed in a non-sustainable manner.
- The reliance on active cooling that uses devices such as air-conditioners increases to achieve thermal comfort.


CONTEMPORARAY APPROACHES

BAU vs Deep Cut Scenario

- BAU refers to what is actually prevailing.
- The deep-cut scenario refers to a proposition of implementing aggressive measures such as improvements in building envelope technologies and cooling technologies to reduce the cooling demand.

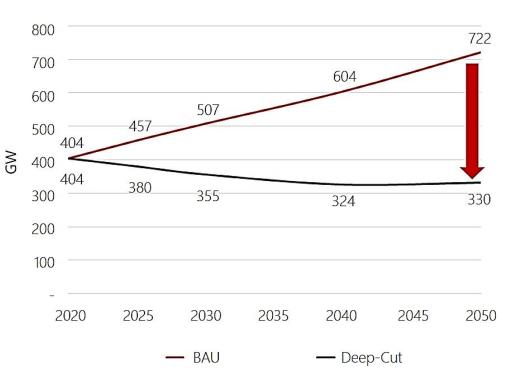
Target values for metrics like

- Residential Envelope Transmittance Value (RETV) of envelope
- U-value of roof for both existing and new buildings are set for different time periods in the deep cut

Urban residential space cooling energy requirement map of India, 2050 Source: Developing Cost-Effective And Low-Carbon Options To Meet India's Space Cooling Demand In Urban Residential Buildings Through 2050

CONTEMPORARAY APPROACHES

Impact of Building envelope


The envelope of a building undergoes retrofitting at much greater intervals. This translates into higher energy and environmental costs for decades.

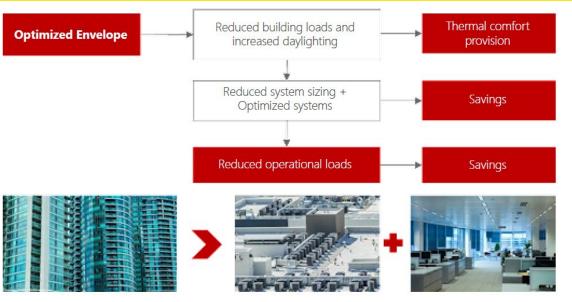
Optimizing building envelope as a standalone strategy with respect to its RETV value demonstrates opportunity to significantly reduce cooling demand by decreasing the discomfort degree hours (DDH).

Two-fold benefit of optimised building envelope

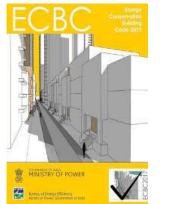
1. Reduces cooling loads on other building systems

2. Reduces associated economic impacts such as HVAC sizing, etc.

Peak Load for Cooling systems (GW) Source: Developing Cost-Effective and Low-Carbon Options to Meet India's Space Cooling Demand In Urban Residential Buildings Through 2050



CONTEMPORARAY APPROACHES


Provisions in code

To achieve the needful reduction in cooling demand, national guidelines, codes, and tools have been developed for implementation.

- ECBC 2007 & 2017(Revised Edition) to set the minimum energy performance for commercial buildings in India.
- Eco-Niwas Samhita (Part-1) was launched in 2018 to include minimum performance requirements for residential building envelope.
- Eco Niwas Samhita (Part-2) launched in 2021 with inclusion of building systems in addition to envelopes.

Reduced operational energy loads and economic benefits with thermal comfort provision in codes like ECBC, ENS 20181 & 2021 from optimized building envelope and electro mechanical systems

ECO-NIWAS SAMHITA 2018 Biberg Convertion Adding Carls for for Assistantial Sublidged

ECO-NIWAS SAMHITA 2021 Code Compliance and Arth of Electric Mechanical and Anomabile Compliance and Arth of Electric Mechanical and Anomabile Compliance and Arth of Electric Mechanical and

THERMAL COMFORT METRICS

- Heat transfer through roofs can be considered similar to walling material in terms of thermal conductivity and relevance of R-value.
- However, to reduce radiative heat gains, surface of roof exposed to the outdoors can be treated with coatings that increase solar reflectance.

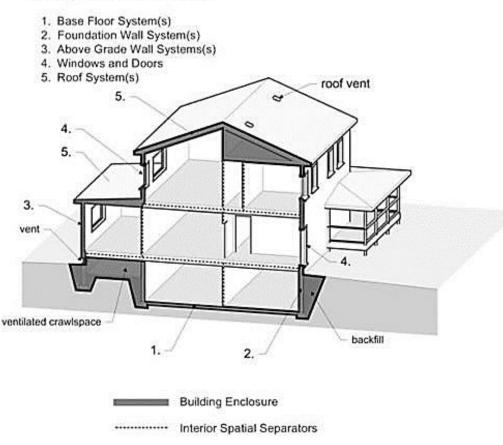
Parameter	Metric	Building envelope element		
Thermal Conductivity	R value – U value	Walls		
Thermal Mass Specific heat capacity		 Internal External 		
Thermal Conductivity (Frames and Glass)	R value – U value	Fenestration Windows		
Solar Gains	Solar Heat Gain Coefficient	SkylightsDoors		
Visible Light Transmittance	VLT			
Thermal Conductivity	R value – U value	Roofs		
Thermal Emissivity	Solar Reflectance	Floors Foundations		

Relevant metrics for building envelope elements in terms of heat transfer Source: Rawal, R., 2021. Heat Transfer And Your Building Envelope, Solar Decathlon India

SESSION-3

- **Building Physics & Fundamental of Thermal Comfort**
- 1. Concept of energy and heat
- 2. Factors influencing heat transfer and laws of thermodynamics
- 3. Heat balance and adaptive thermal comfort method
- 4. Local thermal discomfort

BUILDING PHYSICS (BUILDING)

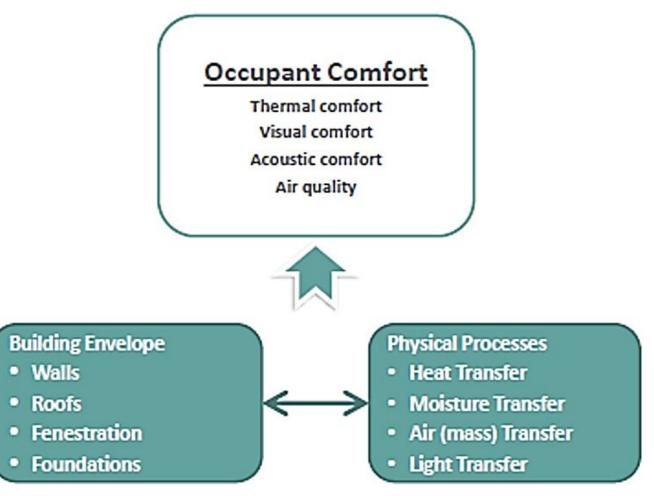

Building physics includes the study of the interactions between heat, moisture and air movement between indoor and outdoor environments

What is a *BUILDING*?

Your *Environmental Separator*.

- A building provides shelter shelter from the elements as well as from other dangers and the outdoor environment.
- Its' function is to separate the inside from the outside
- A building creates an interior environment that is different from the exterior environment it is an

Building Enclosure Components:



BUILDING PHYSICS (PURPOSE OF BUILDING)

Purpose of *Buildings*?

Buildings are designed for *People* and for *Specific tasks*.

- ✓ The building needs to keep people
 Comfortable, Efficient, and Healthy.
- *Energy Efficient Design* seeks to create
 buildings that keep people comfortable
 while minimizing Energy Consumption.

Occupant comfort, Physical processes, and Elements of building Relationship

BUILDING PHYSICS (CONCEPT OF ENERGY & HEAT)

2nd Law of *Thermodynamics*

"In an isolated system, a process can occur only if it increases the total entropy of the system".

-Rudolph Clausius

- Energy moves from higher state to lower state –(the second law of thermodynamics)
- Heat moves from warm to cold (thermal gradient)
- Moisture moves from more to less (concentration gradient)

- ✔ Heat moves from warmer to cooler.
- ✔ Air moves from higher pressure to lower pressure
- ✓ *Moisture* moves from wetter to drier.

BUILDING PHYSICS (HEAT TRANSFER IN BUILDINGS)

Heat Transfer Calculations in Buildings

Conduction- Transfer of energy due to internal vibrations of envelop building material.

Convection- Transfer due to air infiltration from door windows.

Radiation- Transfer of heat through windows and transparent surfaces in form of electromagnetic waves.

Note:

- ✓ ECBC/ENS regulates the U-Factor and SHGC for materials and glazing units.
- ✓ Solar incident radiation depends on the weather condition and solar altitude angle.

 $Q_{\text{Conduction}} {=} U {\cdot} A {\cdot} (\theta_{\text{i}} {-} \theta_{\text{s}})$

Q = Heat transfer through conduction U or U-factor = Overall heat transfer co-efficient (W/(m2·K)) A = Surface area delta T = Temperature difference across surface; $T_{in}(\theta_i) - T_{out}(\theta_2)$ (K)

$$Q_{\text{convection}} = h_{cv} \cdot A \cdot (\theta_s - \theta_f)$$

 Q_c = Heat transfer through convection h_{cv} = Heat Transfer Coefficient θ_s =Temperature of the surface θ_f =Temperature of the fluid

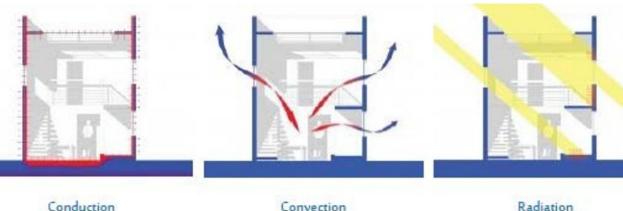
$$Q_{Radiation} = SHGC \cdot A \cdot E_t$$

Where: SHGC = solar heat gain coefficient E_t = incident solar radiation A = area of transparent element

BUILDING PHYSICS

Heat Transfer in Buildings

Conduction- Transfer of heat through direct contact

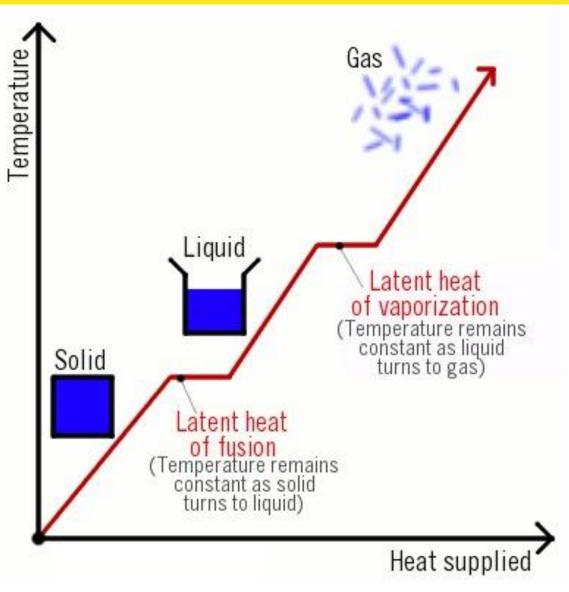

Convection- Transfer due to movements of gases,

liquid, and vapor.

Radiation- Transfer of heat through electromagnetic waves.

Clockwise- Forms of heat transfer; Conduction; Radiation; Convection Source- https://thefactfactor.com/facts/pure_science/physics/conduction/9868/; Rawal, R., 2021. Heat Transfer and Your Building Envelope, Solar Decathlon India

Convection



BUILDING PHYSICS (SENSISBLE & LATENT HEAT)

Sensible Heat – When the temperature of an object falls/rises, the heat removed/added is called 'sensible heat'.
Sensible heat results in a change in temperature.

Latent Heat- Latent heat is the heat added/removed to an object in order for it to change its state. It affects the moisture content which results in a change of temperature.

Total flow of heat is the algebraic sum of sensible and latent heat within space.

BUILDING PHYSICS & THERMAL COMFORT

Use of Building Physics to Optimize Energy use for Thermal Comfort

External Factors (Climate) Temperature Relative humidity Solar Radiation Wind Speed and Direction Miscellaneous factors

Internal Factors (Loads) People Equipments Lights

Passive Strategies

- Appropriate orientation
- Shading devices
- Daylight design
- Thermal mass (time lag)

- Strategies
 Fans
- Evaporative
 Coolers
- · Air-
 - Conditioners

Active

External Factors.(Climatic)

- Temperature
- Relative Humidity
- Solar Radiation
- Wind Speed and Direction
- Miscellaneous Factors

Internal Factors.(Loads)

- People
- Equipment
- Lights


HEAT BALANCE AND ADAPTIVE THERMAL COMFORT

Heat Balance Method

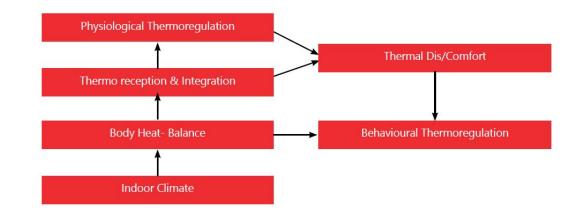
The heat balance method presents a physics based mathematical model that establishes thermal comfort when heat loss from the body is exactly equal to heat produced within the body.

The heat balance method approaches thermal comfort from a biological perspective.

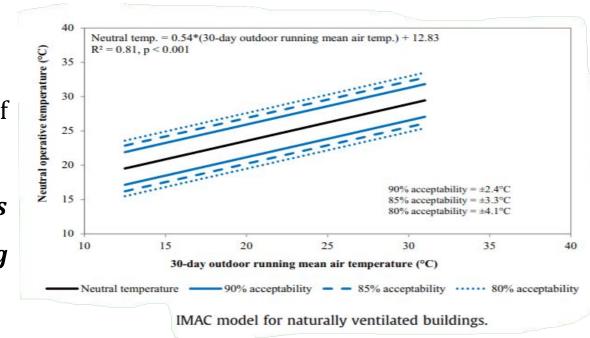
- If heat generation rate > heat loss rate, individual will feel warm/ hot
- If heat generation rate < heat loss rate, individual will feel cool/ cold
- For thermal comfort, heat generation rate = heat loss rate

Comfort Theory - Heat Balance Method Source: Fantozzi, F., & Lamberti, G. (2019). Determination of thermal comfort in indoor sport facilities located in Moderate Environments: An overview. Atmosphere, 10(12), 769. https://doi.org/10.3390/ atmos10120769

HEAT BALANCE AND ADAPTIVE THERMAL COMFORT


Adaptive Thermal Comfort Method

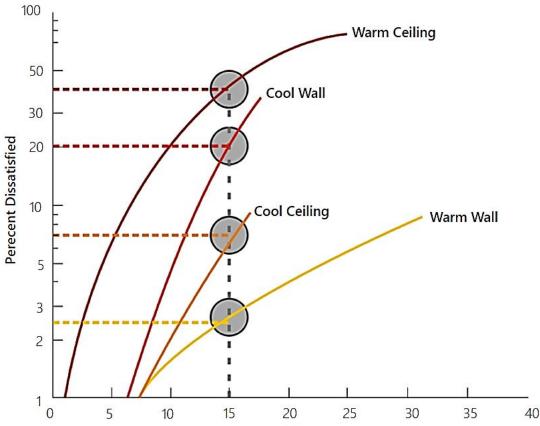
Adaptive thermal comfort model takes into consideration all three-


- Physiological,
- Psychological,
- Behavioural

aspects of occupants and their influence on perception of thermal comfort.

It prescribes indoor setpoint temperature to address 90% acceptability of thermal environment among occupants.

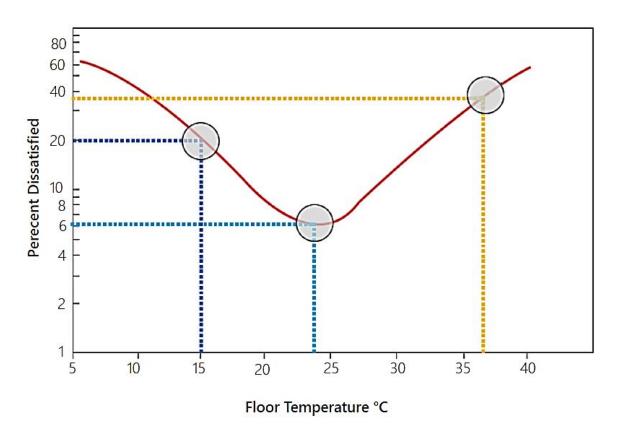
Comfort Theory: Adaptive Thermal Comfort Method



LOCAL THERMAL DISCOMFORT

Local Thermal Dis-Comfort

Studies have identified that it is possible for occupants to feel uncomfortable even if they feel thermally neutral overall. This usually happens when one or more parts of their body are either too warm or too cold.


- Local thermal discomfort is also a reason why it is highly unlikely for indoor spaces to achieve 100% thermal acceptability.
- To accommodate this, most standards like ASHRAE/IMAC specify conditions to ensure 80% acceptability of the thermal environment amongst occupants.

Radiant Temperature Asymmetry, °C Occupant dissatisfaction levels due to radiant temperature asymmetry in walls and roof. Source: Abushakra Bass, Akers Larry, Baxter Van, Hayte Sheila & Paranjpey Ramesh (2017). ASHRAE Fundamentals SI edition.

LOCAL THERMAL DISCOMFORT

Zusammenarbeit (GIZ) GmbH

Air Temperature Difference between Head and Ankles °C

Occupant dissatisfaction levels due to radiant temperature asymmetry in floor. Source: Abushakra Bass, Akers Larry, Baxter Van, Hayte Sheila & Paranjpey Ramesh (2017). ASHRAE Fundamentals SI edition.

Percentage of Seated People Dissatisfied as Function of Air Temperature Difference Between Head and Ankles Source: Abushakra Bass, Akers Larry, Baxter Van, Hayte Sheila & Paranjpey Ramesh (2017). ASHRAE Fundamentals SI edition.

SESSION-4

Passive Strategies & Building Materials

- 1. Affordable housing & passive design strategies
- 2. Innovative building materials (wall, glazing & roof)
- *3. Case studies*

façade.

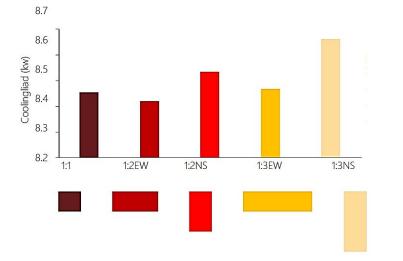
AFFORDABLE HOUSING & PASSIVE STRATEGIES

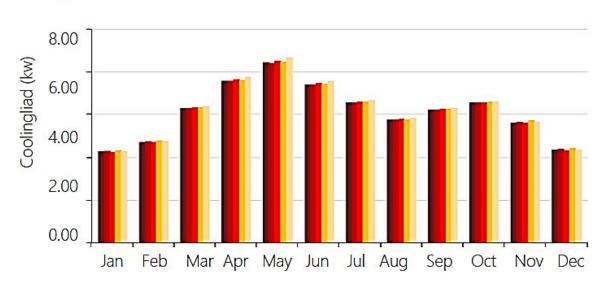
Strategies for various modes of heat transfer

Passive design strategies may tackle either one or a combination of these modes of heat transfer.

- Orientation, and massing of the building act as passive design strategies by influencing the quantity and quality of radiation reaching the envelope surface.
- Similarly, shading devices obstruct the amount of radiation entering the buildings through windows.
- Fixed or movable shading devices can be chosen depending on the trajectory of sun and direction of the

Mode of heat transfer	Passive Design strategies applicable			
Conduction	Materials and Construction			
Convection	Space Volume, Building form- (Roof form, plan)			
Radiation	Orientation Shading/ Brise Soleil, jail etc			

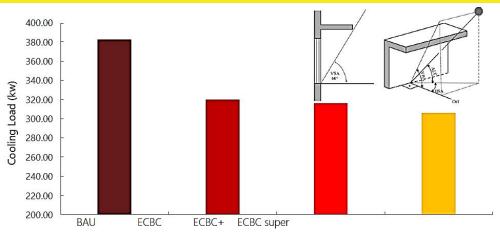

Passive design strategies categorized based on modes of heat transfer

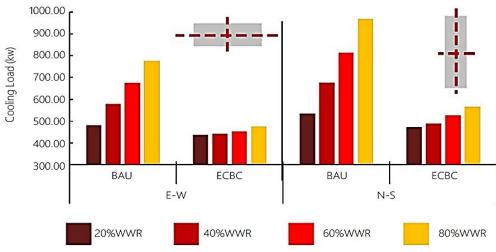


10.00

Form & orientation of the building

- Daylight penetration and fenestration design have implications on heat gain/loss through the building envelope.
- Careful orientation of fenestration can help achieve thermal and visual comfort
- Daylight harvesting from the north and south facade should be maximized with proper orientation of the building.


Top: peak cooling load for various forms and orientations; Bottom: variations in peak cooling load for each month for all sample cases.

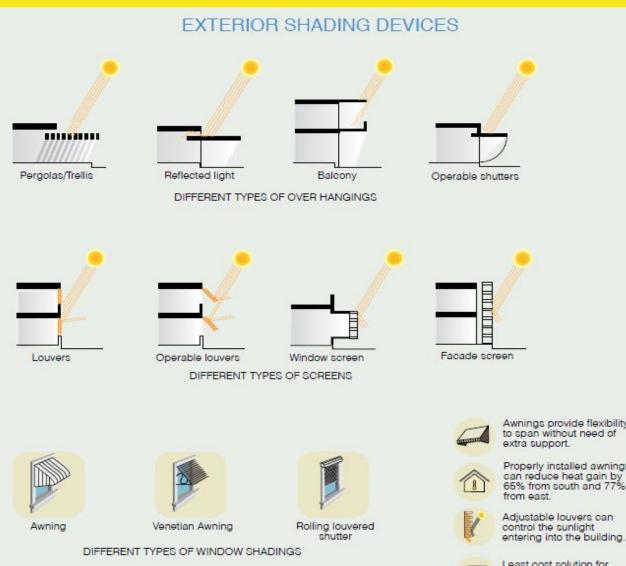


Cooling loads for BAU, ECBC, ECBC+, and ECBC super buildings having 600mm shading over windows

Comparative analysis of various WWR levels in East-West and North-South orientations for business-as-usual and ECBC compliant buildings

Shading & WWR

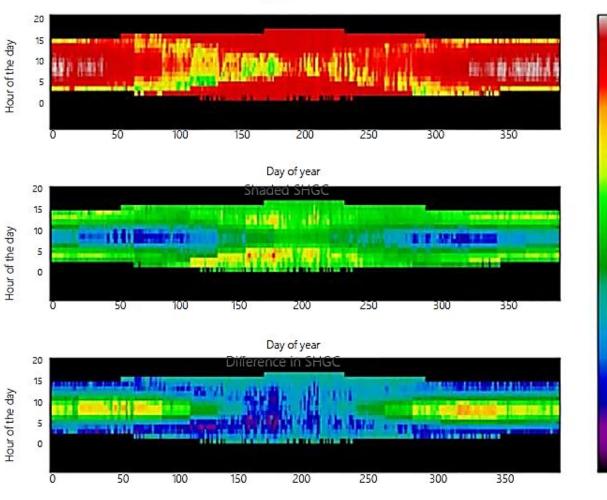
- Reduce heat gain and cooling energy use of the building.
- Dynamic movable external shading systems, vertical shading elements like fins are more useful in cutting radiations when the sun is at a lower altitude i.e., in East and West facades
- Greater WWR escalates the cooling load significantly in BAU cases. However, compliance with ECBC code results in reduced cooling load across the four WWR cases.


cutting heat gain into the

building

AFFORDABLE HOUSING & PASSIVE STRATEGIES

- Exterior shading devices can be provided in a variety of materials and designs, including sunshades, awnings, louvers, bamboo screens, jaali, and green cover through vines.
- These can be implemented with minimal cost implications and have the most favourable cost-benefit relation with respect to thermal comfort.
- To prevent summer overheating and glare, a good shading device strategy should be used with glazed openings.


0.24

0.16

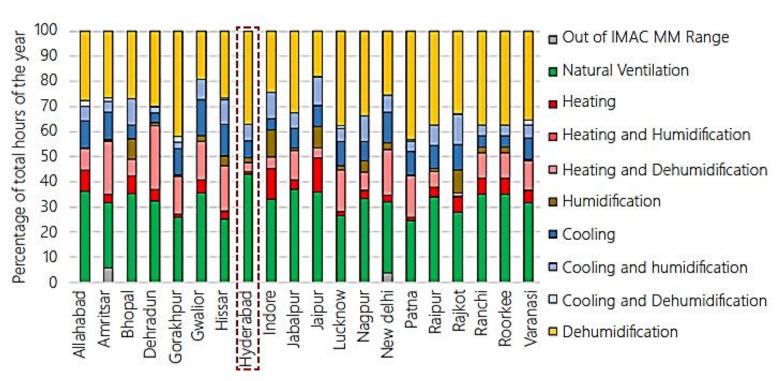
0.08

0.00

Unshaded SHGC

0.64 SHGC value of glass while maintaining ۲ 0.56 desirable VLT and U-value. Hence, combination 0.48 multiple passive design of measures can 0.40 contribute to RETV value of 15 W/Sqm. 0.32

Top- SHGC values of an unshaded window throughout the year; Middle- SHGC values of the same windows in case of shading present throughout the year; Bottom- Difference in SHGC values of the first two graphs.

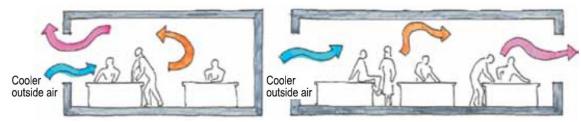


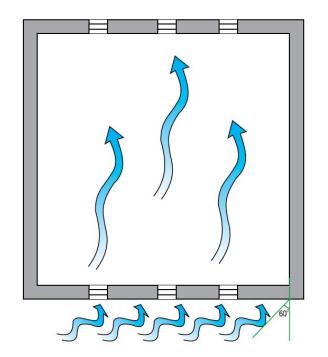
Natural ventilation

Natural ventilation is defined as provision of fresh air and removal of stale air using the naturally occurring forces of wind.

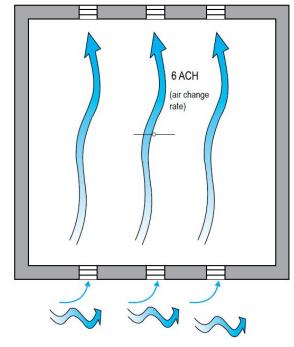
It can be observed in figure that natural ventilation as a standalone strategy can provide comfort for around 35% of the total hours of the year in hot-dry, warm-humid, and composite climates.

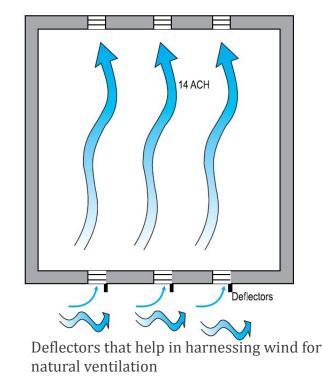
Percentage of comfort hours in a year for different building operation modes listed in IMAC-MM. Source: M., Shulka, Y., Rawal, R., Loveday, D., de Faria, L., Angelopoulos, C. (2020). Low Energy Cooling and Ventilation in Indian Residences Design Guide. CEPT Research & Development Foundation & Loughborough University. http://carbse.org/reports-and-articles/




Natural ventilation

It is shown that the ACH improved from 6 ACH per hour

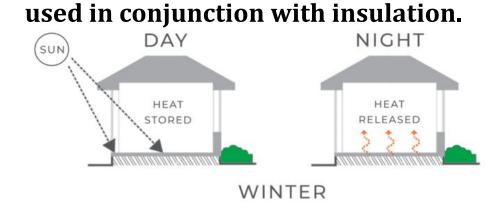

to 14 ACH per hour with the use of the deflectors.

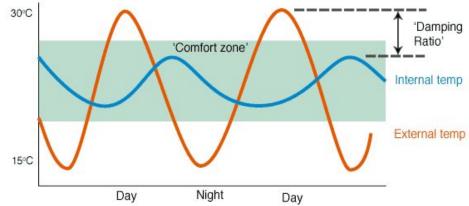

Principles of single-sided ventilation and cross-ventilation

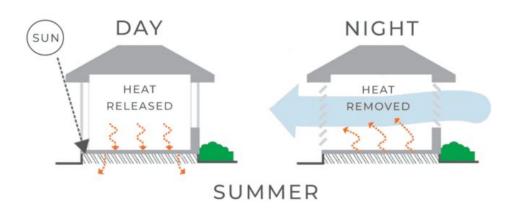
Wind blowing at an angle of 60° from the perpendicular axis of the façade

Wind blowing parallel to the façade

Source: Guidelines for Energy-Efficient and Thermally Comfortable Public Buildings in Karnataka







'Thermal mass' describes a material's capacity to absorb, store and release heat. A common analogy is thermal mass as a kind of thermal battery.

- Denser thermal mass materials are more effective passive solar materials. Thus, denser the material the better it stores and releases heat.
- Do not substitute thermal mass for insulation. It should be

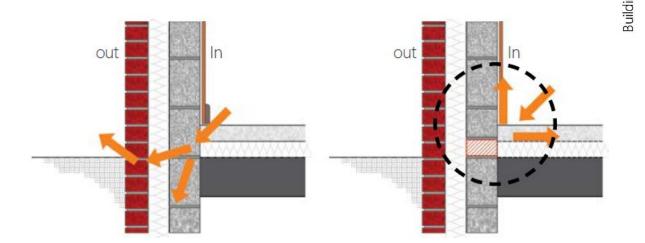
To understand the quantum of heat gain through various components of the envelope, the top and intermediate floors of the N–S oriented rectangular building with no windows on the east and west was simulated.

 Components of a building
 Properties
 Heat gain
 Heat gain
 Heat gain

- For the intermediate floor, the heat gained through windows is much higher compared to the heat gained through walls.
- 2. For the top floor, it is seen that the heat gain from the roof is highest, while the heat gain from windows is also significant.

Components of a building envelope	Properties	Heat gain from roof (kWh)	Heat gain from wall (kWh)	Heat gain through windows (kWh)
Level: Intermediate floor 6 inch RCC slab with plaster (U-value: 3.8 W/m ² .K)	Built-up area: 1200 m ² Floor-plate dimension: 14.0 x 28.6 m Orientation: N—S No windows on east and west Overhangs: 600 mm fixed Glazing type: Single clear 6 mm (U-value: 6.1 W/m ² .K, VLT: 88%, SHGC: 0.81) No heat exchange through upper and lower floors No internal loads	0	93	3106
Roof: 150 mm RCC slab with plaster (U-value: 3.8 W/m ² .K)	Cooling set-point: 26 °C Fresh air + Infiltration: 1 ACH	7293	-791 ⁹	2770

Source: Guidelines for Energy-Efficient and Thermally Comfortable Public Buildings in Karnataka



INNOVATIVE BUILDING MATERIALS (Wall, Glazing & Roof)

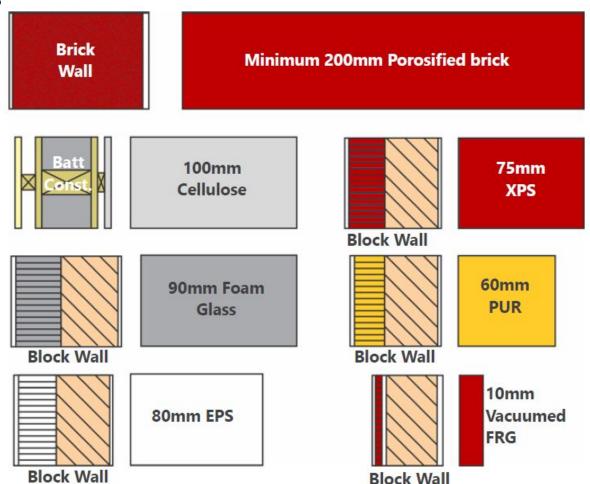
Thermal conductivity and thermal bridge

A **thermal bridge** is a part of the assembly (such as metal screws or nails) that allows direct heat transfer between indoors and outdoors due to interruptions in insulation.

Aluminium 8,160.0 2,320.0 Steel 80.0 Sandstone 72.0 Concrete Mortar 40.0 Glass 32.4 30.3 Adobe 28.0 Hollow concrete block 27.6 Snow 23.6 Water 23.2 Plaster 17.6 Cly brick 6.8 Aerated concrete Pine wood 6.0 1.6 Mineral wool **EXP.** Polystyrene 10,000 1,000 10 100 Thermal Conductivity (W/m.k)

Walling assemblies and thermal bridging. Information and Image Courtesy: Prof. Cloude Roulet, EMPA, Switzerland, Indo Swiss BEEP project, BEE, India Thermal conductivities of common building materials. Information and Image Courtesy: Prof. Cloude Roulet, EMPA, Switzerland, Indo Swiss BEEP project, BEE, India

INNOVATIVE BUILDING MATERIALS (Wall, Glazing & Roof)


Material thickness and location in walling assemblies

- Location of each material in the assembly also affects the surface temperature values and other functioning of the assembly.
- This can be understood by developing

temperature profile across the wall section.

S/N Testing parameter		Instrument	Applicable Testing Standard		
1	Thermal Thermal Constants 1 Conductivity and Specific heat		ISO/DIS 22007-2:2015 (for both bricks and blocks) (ISO, 2008)		
2	2Dry densityPrecision Weighing Scale, Inert Gas Oven, Water Bath3Water AbsorptionPrecision Weighing Scale, Inert Gas Oven, Water Bath		ASTM C20 (for both bricks and blocks) (ASTM, 2015)		
3			IS 3495 (for bricks) (BIS, 1992b) IS 2185 (for blocks) (BIS, 2005)		
4	Compressive Compression Testing Strength Machine		IS 3495 (for bricks) IS 2185 (for blocks)		

Measured properties and corresponding testing standards & instruments used

Minimum thickness needed to achieve U value < 0.4W/m2K. Information and Image Courtesy: Prof. Cloude Roulet, EMPA, Switzerland, Indo Swiss BEEP project, BEE, India

INNOVATIVE BUILDING MATERIALS (Wall, Glazing & Roof)

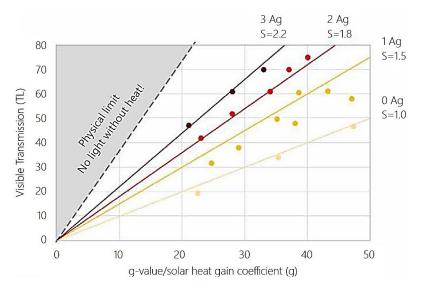
U-value database of walling assemblies

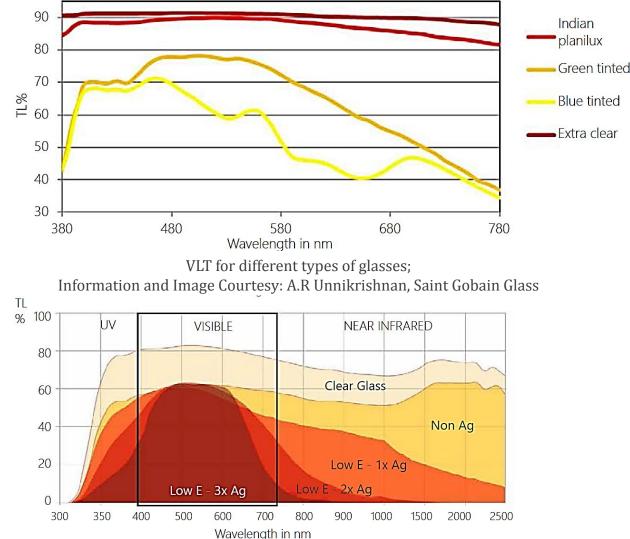
Wattle and Daub	
RCC Wall (100 mm Thick)	
Limestone block with Lime mortar Lime Plaster	
Limestone block with cement mortar cement	
Compressed Stabilized earth block (CSEB) wall	
Unstabilized CEB	
Hollow Clay Brick(100 mm thick) with Cement	
Bamboo Crete	
RCC Wall (100 mm Thick) + Both Side PVC Panel	
Burnt Clay Brick wall	
Burnt Clay Brick with Lime mortar Lime Plaster	
Laterite Block Wall	
Unstabilized Rammed Earth	
Glass fibre reinforced Gypsum Panel -with partial	
Glass fibre reinforced Gypsum Panel -with RCC	
Light Gauge framed steel structure with PPGI	
Stabilized Adobe	
Rattrap bond wall	
Stabilized Rammed Earth	
Glass fibre reinforced Gypsum Panel -Unfilled	
Unstabilized Adobe	
Hollow Clay Brick (200 mm thick) with Cement	
Light Gauge framed steel structure with EPS	
Hollow Clay Brick (200 mm thick) with Rockwool	
Hollow Clay Brick (100 mm thick) with	
AAC Block with Lime mortar Lime Plaster	
AAC Block with Cement mortar Cement Plaster	
AAC Block with Perlite-based cement plaster	
Hollow Clay Brick (200 mm thick) with Cement	
RCC Wall (100 mm Thick) + Both Side Styrofoam	
RCC Wall (100 mm Thick) + EPS (50 mm)	
Reinforced EPS core Panel system	
RCC Wall (100 mm Thick) + Both Side PVC Panel +	
EPS Structural stay-in-place formwork (Coffor)	-

most efficient

S/N	Test Phase	Wall types	Thickness (in mm)	U value (W/m².K)	S/N	Test Phase	Wall types	Thickness (in mm)	U value (W/m².k
1	1	Base case: Burnt Clay Brick Wall2502.41			17	2	AAC Block Wall with Perlite based Cement Plaster	230	0.76
2	1	Rattrap bond wall	250	2.11	18	2	Unstabilized Rammed Earth	230	2.13
3	1 Light Gauge framed steel structure with EPS 136 1.37		1.37	19	2	Stabilized Rammed Earth	230	2.09	
4	1	Light Gauge framed steel structure with PPGI Sheet	150	2.12	20	2	AAC Block Wall with Cement Mortar and Cement Plaster	230	0.78
5	1	Reinforced EPS core Panel system	150	0.56	21	2	AAC Block Wall with Lime mortar and Lime	220	0.82
6	1	Glass fibre reinforced Gypsum Panel -Unfilled	124	2.06			Plaster		
7	1	Glass fibre reinforced Gypsum Panel -with	124	2.12	22	2	Burnt Clay Brick with Lime Mortar and Lime Plaster	250	2.31
		RCC & non-structural filling			23	2	Limestone with Lime Mortar and Lime Plaster	224	2.84
8	1	Glass fibre reinforced Gypsum Panel -with partial RCC filling	124	2.13	24	2	Limestone with Cement Mortar and Cement Plaster	230	2.82
9	Structural stay-in-place formwork system (Coffor) – Insulated panel 230 0.44			25	3	Hollow Clay Brick (100 mm thick) with Cement Plaster	130	2.7	
10	2 Bamboo Crete 65 2.71		26	3	Hollow Clay Brick (100 mm thick) with Cement Plaster and XPS (25 mm)	158	0.89		
11	2	2. Stabilized Adobe 230 2.11				Hollow Clay Brick (200 mm thick) with			
12	2			27	3	Rockwool and Cement Plaster	230	1.28	
13	2			2.17	28	3	Hollow Clay Brick (200 mm thick) with Cement Plaster	230	1.83
14	2	Unstabilized Adobe	230	2.05	29	3	Hollow Clay Brick (200 mm thick) with	258	0.75
15	2	CSEB	230	2.79			Cement Plaster and XPS (25 mm)		
16	2	Unstabilized CEB	230	2.74	30	3	RCC Wall (100mm thick)	100	3.5
					31	3	RCC Wall (100mm thick) + EPS (50 mm thick)	150	0.58
					32	3	RCC Wall (100mm thick) + Styrofoam (24 mm thick) at both sides	154	0.6
U-value database of all selected walling assemblies and technologies				33	3	RCC Wall (100mm thick) + PVC panel (6mm thick) at both sides	112	2.62	
				34	3	RCC Wall (100mm thick) + PVC panel (6mm thick) at both sides + EPS Board (50 mm thick) at one side	165	0.5	

3.61 3.59 2.84 2.82 2.79 2.74 2.71 2.71 2.62 2.41 2.31 2.17 2.13 2.13 2.12 2.12 2.11 2.11 2.09 2.06 2.05 1.83 1.37 1.28 0.89 0.82 0.78 0.76 0.75 0.65 0.58 0.56 0.52 0.44





Glazing assemblies

Variation in transmission levels of different types of glasses at different wavelengths within the visible light spectrum.

Selectivity, solar heat gain coefficient and visible light transmission of different low e-coating combinations Information and Image Courtesy: A.R Unnikrishnan, Saint Gobain Glass

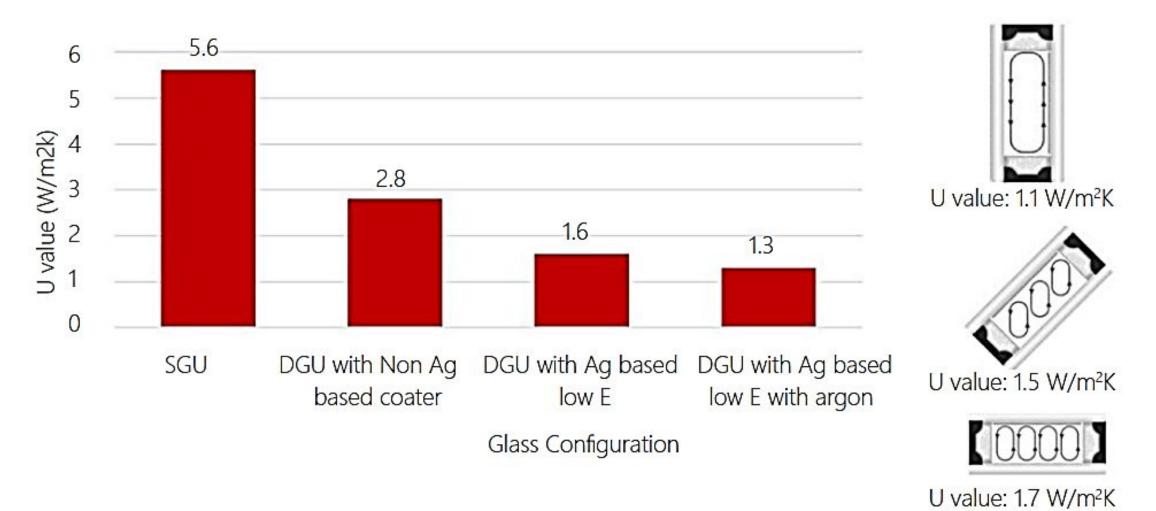
Performance of different low-e coating combinations in UV, visible light, and IR spectrums.

Glazing assemblies

- Architects/ designers can utilize these graphs to determine the most suitable options in their projects.
- By knowing the maximum limit
 of solar heat gains permissible
 in the building, a cap on solar
 heat gain coefficient can be
 decided.

Cooling loads associated with different glazing units. Information and Image Courtesy: A.R Unnikrishnan, Saint Gobain Glass

Product	VLT (%)	External Reflection (%)	Internal Reflection (%)	Solar Factor	Shading coefficient	U-value
А	80	15	15	0.76	0.87	2.6
B	<mark>4</mark> 6	16	18	0.22	0.25	1 <mark>.</mark> 5
С	46	20	22	0.47	0.54	2.8
D	51	18	22	0.28	0.33	1.5
E	47	17	11	0.38	0.43	1.9
E D			6	2.71 67.22		
c e				72.51		
В				79.7	6	
A					1	02.85
0	20	40	60 Cooling Load	80 (kWh/m2)	100	1



Glazing assemblies

U value based on glass & frame configuration; Right- Orientation of assembly with respect to horizontal affects U-value

GUIDANCE ON U- VALUE, SHGC AND VLT FOR FENESTRATIONS

Design Factors that impact on U-value, SHGC, VLT Etc..

- 1. Climate Analysis
- 2. Optimum Orientation of Building
- 3. Shadow Analysis
- 4. Daylight Analysis

Don't in Indian climatic Context

- Do not use glass with very low U value and moderate SHGC.
- Do not assume dark tinted glass brings solar control
- Do not use un-insulated frames

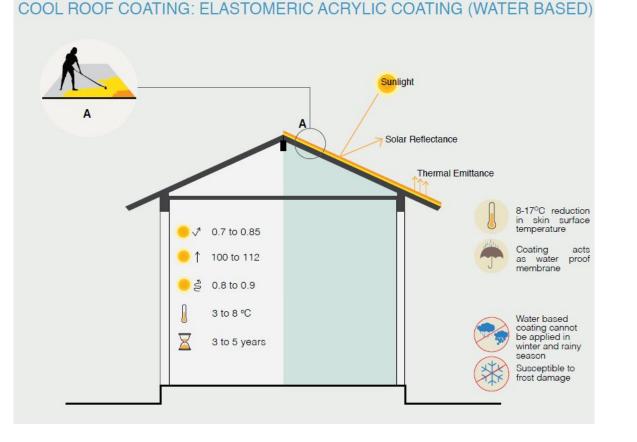
Dos in Indian climatic Context

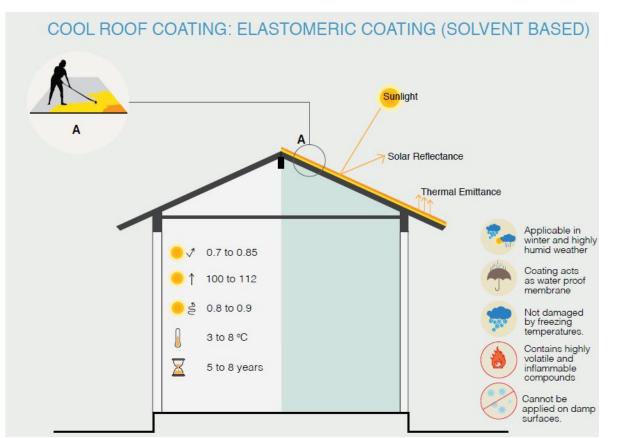
- Products with least SHGC and U value and optimum VLT.
- Optimum set of values for U-value, solar heat gain coefficient, and visible transmittance.
- Add overhead shading, use dark tinted glass at visible height and clear at higher levels.

Note: Remember that same fenestration product behaves differently w.r.t. the specific design. It should not be assumed that products with Low U-value and SHGC are best and universal solution.

Roofing Coating Materials

Interaction of roofing materials and surfaces with incident solar radiation. Source (left): ASC Building Products. (2020). Energy-Efficient Cool Colours in Today's Metal Roofing. ASC Building Products. Retrieved from https://www.ascbp.com/cool-colors-and-energy-savings/.

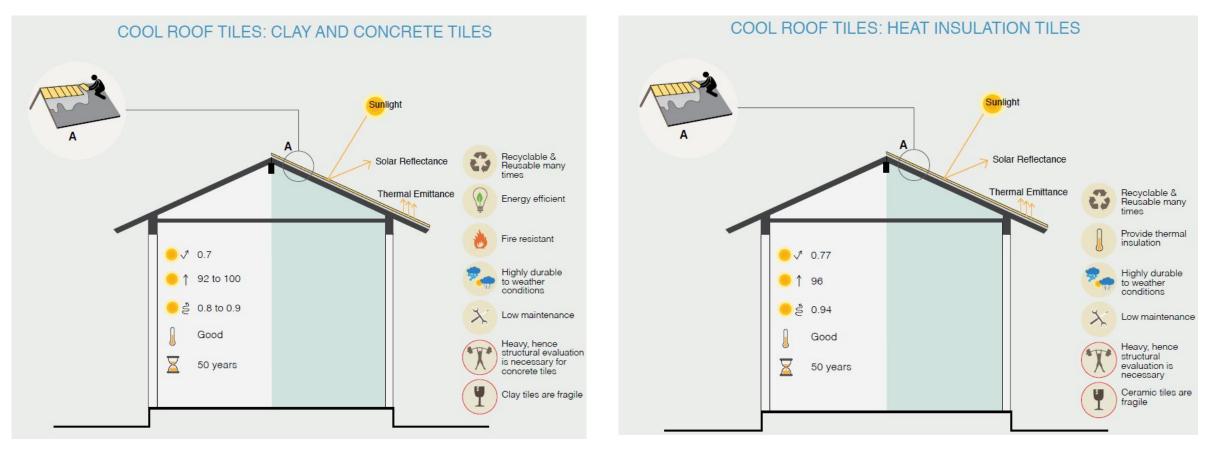




Roofing/Coating Materials

Elastomeric Coating Solvent & Water based

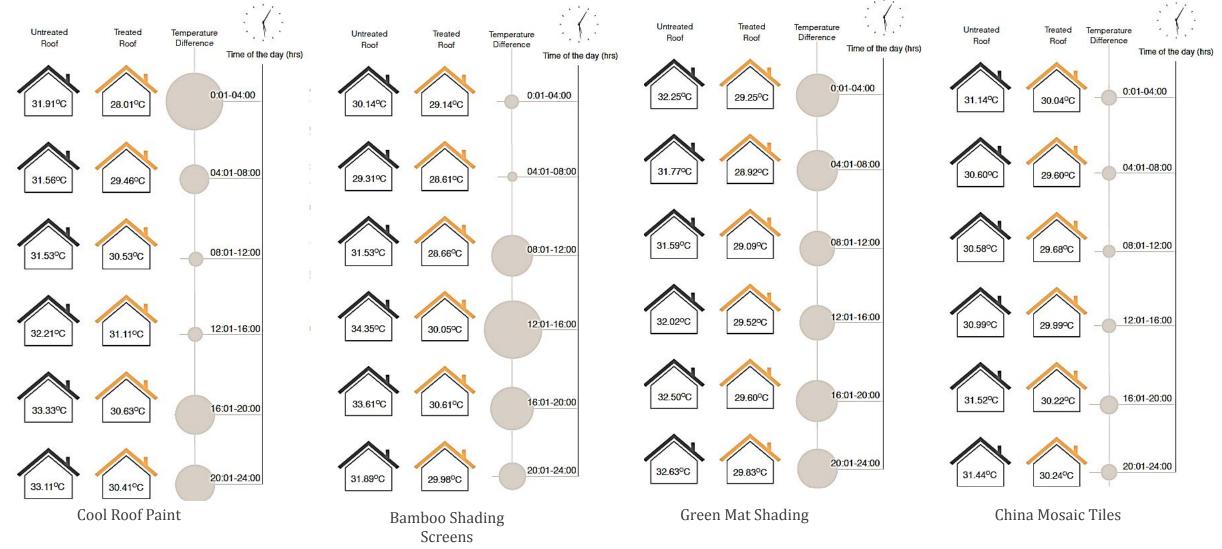
Source HANDBOOK ON ACHIEVING THERMAL COMFORT WITHIN BUILT ENVIRONMENT, VOLUME I



Roofing/Coating Materials

Spray Polyurethane Foam & Heat Insulation Tiles

Source HANDBOOK ON ACHIEVING THERMAL COMFORT WITHIN BUILT ENVIRONMENT, VOLUME I


Source HANDBOOK ON ACHIEVING THERMAL COMFORT WITHIN BUILT ENVIRONMENT, VOLUME I

Source HANDBOOK ON ACHIEVING THERMAL COMFORT WITHIN BUILT ENVIRONMENT , VOLUME I

CASE STUDY- RAJKOT SMART GHAR III

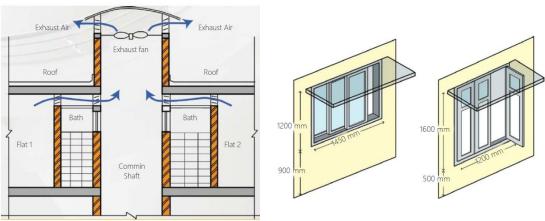
RAJKOT SMART GHAR III

The climate of Rajkot is composite and the peak daytime temperatures during the summer reach 41°C-43°C.

Reducing heat gains through walls and roof:

Walling material was changed to 230mm thick AAC blocks. In doing so, the U-value of walls dropped to 0.8 W/SqmK from 2W/SqmK.

Improving Ventilation through shaft design:


A roof feature with exhaust fans on top of the shaft was added to create negative pressure in the shaft at all times

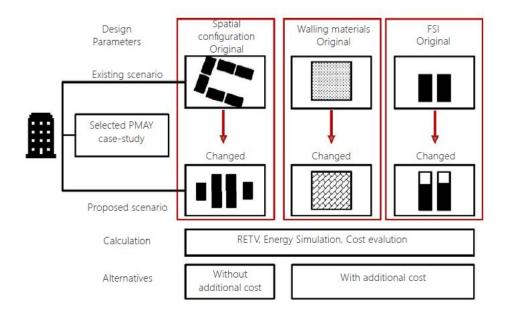
Reducing heat gains through window design and ventilation:

This design was changed to a taller partially glazed casement type for selected windows. The 90% openable casement windows allowed for better ventilation flow rates.

Site layout for Rajkot Smart GHAR-III (PMAY) project. Source: (Rawal, Shukla, Patel , Desai, & Asrani, 2021)

Improving ventilation through common service shaft.

Fully glazed window design (left) was improved to taller, partially glazed casement windows (right)



SHREE RAM NAGAR COOPERATIVE HOUSING SOCIETY, AHMEDABAD (PMAY SITE)

No. of floors	4
Carpet Area (m ²)	26.76
Building Material	Solid Concrete Block (100 mm thick)
U-value of building material (W/m ² K)	4.15
RETV (W/m²)	29.46

Figure 139: Site Masterplan for Shree Ram Nagar Co-operative Housing Society. Source: (Rawal, Shukla, Patel, Desai, & Arsani, 2021)

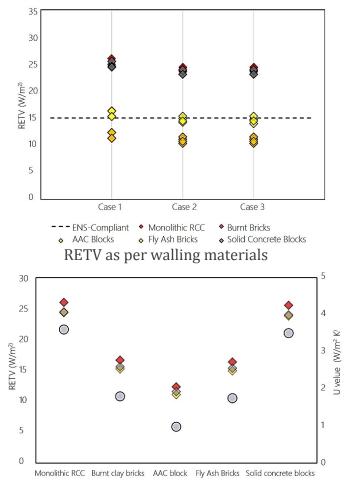
SHREE RAM NAGAR COOPERATIVE HOUSING SOCIETY, AHMEDABAD (PMAY SITE)

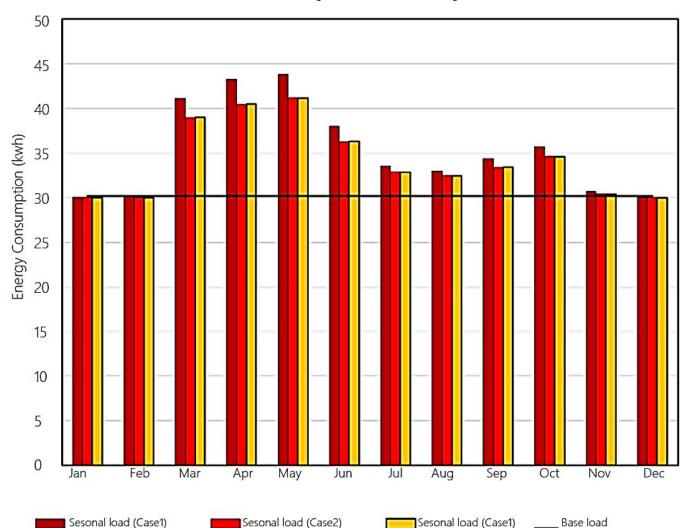
Character	ristics	Ва	se Case – Iayou			(Proposed iented site	Re	se 3 – (Pro – orienteo Increased	site +	lay	se 1: Existing /out	(Witho		3: Re-oriented sed FSI(Witho		Cal
lo. of units			160		N.	160		200			ase 1	Cas	The second s	 Case 3	Without Shading	
Utilized FSI a of permissib		%	64%	5	4	17%		58%			ase 1A2	and the second se	e 2A2	Case 3A2	With Shading	
Common Plo % of Plot Are		a -	10%	5	1	3%		13%		1	ase 1B1		e 2B1	 Case 3B1	Without Shading	
Parking Area utilized FSI			21%	5	1	1%		12%			ase 1B2	Cas	e 2B2	Case 3B2	With Shading	
Parking Area utilized FSI			4.5 – 5.	0 M	4	.5 M		4.5 M	l		ase 1C1		e 2C1	Case 3C1	Without Shading	1
Table 32: Spati	ial site cl	haracteris	tics in cases	s 1, 2, and 3.						/	ase 1C2	a local division of the	e 2C2	 Case 3C2	With Shading	3
			Ŵ			Ì.		' t (ממ		ase 1D1		e 2D1	Case 3D1		
Case	Plot Area	No. of Floors		FSI		Commo Are		Parkin	g Area		ase 1D2	Cas	e 2D2	Case 3D2	With Shading	
			Available FSI	Permissible FSI Area (Sq.mt.)	Utilized FSI Area (Sq.mt.)	Required (Sq.mt.)	Provided (Sq.mt.)	Required (Sq.mt.)	Provided (Sq.mt.)		ase 1E1	Cas	e 2E1	Case 3E1	Without Shading	
Case 1: Existing layout		G + 3	1.8	10561	6716.53	592	589.59	841.99	1235.56		ase 1E2		e 2E2		With Shading	1
Case 2 (Proposed): Re – oriented site	5917 sq.mt.	G + 3	1.8	10651	4900	592	750	539	547	block		Cas		Case 3E2		
Case 3 (Proposed): Re – oriented site + Increased FSI		G + 4	1.8	10651	6100	592	750	539	679		Са	ise develop	ment.			

SHREE RAM NAGAR COOPERATIVE HOUSING SOCIETY, AHMEDABAD (PMAY SITE)

Table 33: Comparison of RETV, EPI, discomfort hours, and cost differences for various walling material options in case 1

	Existing RCC (Mascon)	Burnt Clay Brick	Fly Ash Brick	AAC Block	Solid Concrete Block		
			F		- Contraction		
Case	Case 1	Case 1B 1	Case 1C 1	Case 1D 1	Case 1E 1		
Shading			Without				
RETV	26.00	16.62	16.34	12.35	25.48		
EPI	75.92	48.53	47.71	36.06	74.40		
Comfort hours	4760 - 7627	4887-8599	4716-8608	1874-8760	4618-8009		
Difference in cost	₹ -	₹ -79,50,926	₹ -66,03,988	₹ -76,08,377	₹ +61,12,630		
Case	Case 1A2	Case 1B 2	Case 1C 2	Case 1D 2	Case 1E 2		
Shading			With 600mm overhangs				
RETV	24.95	15.56	15.28	11.29	25.47		
EPI	72.85	45.44	44.62	32.97	71.74		
Comfort hours	4815-7683	5230-8657	5147-8670	2943-8760	4671-8042		
Difference in cost	₹ +46,072	₹-79,04,854	₹ -65,57,916	₹-75,62,305	₹ +61,58,702		





SHREE RAM NAGAR COOPERATIVE HOUSING SOCIETY, AHMEDABAD (PMAY SITE)

Walling material

U-value and RETV for walling materials

Ministry of Housing and Urban Affairs Government of India

THANK YOU!