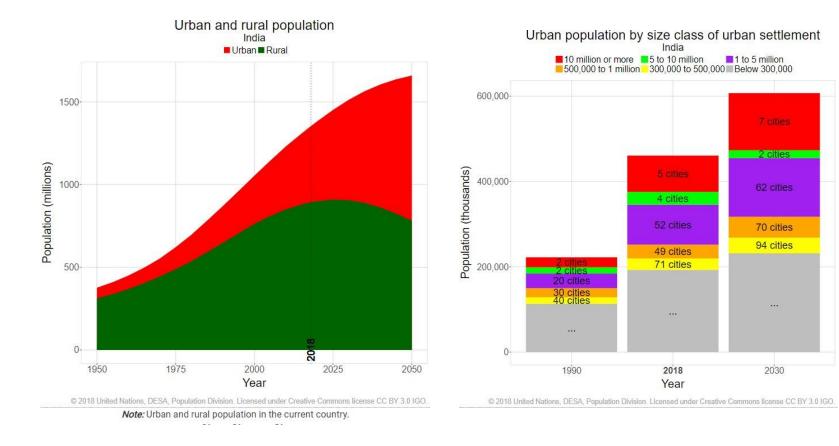


Training #38: 2 Day Awareness Program at Dept. of Architecture, National Institute of Technology, Patna

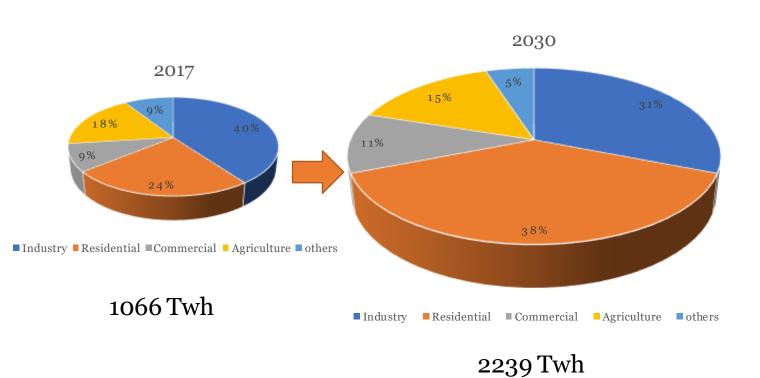
DAY 1

INTRODUCTION



Growing Opportunities with Rapid Urbanization

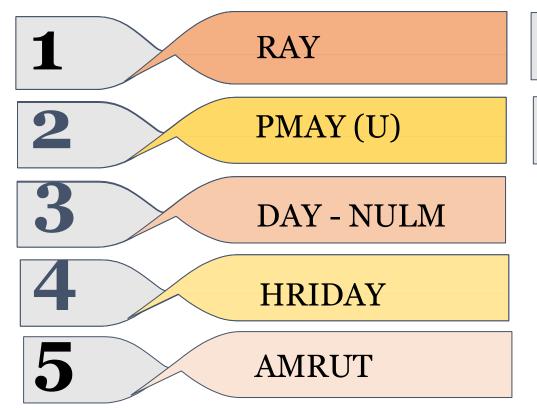
Cities, which will contribute over 80% to GDP by 2050, need to be Receptive, Innovative, and Productive to foster sustainable growth and ensure a better quality of living



Energy demand with Rapid Urbanization

- Residential buildings consumes around 255 TWh electricity in 2017, the electricity consumption in residential buildings is expected to multiply by more than 3X and reach around 850 TWh by 2030. Increased penetration of airconditioning / HVAC in residential building is the key reason for this growth.
- Residential buildings will become the **largest end-user of electricity** in the country accounting for 38% of the total electricity consumption.

 $\left(\right)$


Smart Cities

Mission

JNNURM

MoHUA Initiates for Urban Transformation

Flagship Missions under the Ministry of Housing & Urban Affairs (MoHUA) aim to achieve Transformative, Inclusive and Sustainable development through planning, development and reforms for achieving Urban Transformation.

Affordable Housing in India

Affordable housing, as defined by the National Planning Policy Framework, is housing for sale or rent for those whose needs are not met by the market.

The provision of affordable housing is a key element of the Government's plan to end the housing crisis, tackle homelessness and provide aspiring homeowners with a step onto the housing ladder

Pradhan Mantri Awas Yojna – Urban

- PMAY-U, launched in 2015, aims to provide houses for homeless. The Government is offering this scheme to all UT's and states. It also offers interest subsidy for Home loans for first time buyers in urban areas
- The residential buildings expected to increase by 2 times in terms of floor area by 2030
- 12 million new affordable homes in Urban areas under PMAY by 2022.

Women Empowerment

A significant V percentage is in p the form of high density, multistorey residential blocks

Very low penetration of air conditioning though majority have ceiling fans Ensuring Thermal comforts to occupants through design is of prime importance.

Security of Tenure Better quality of life for Urban Poor's

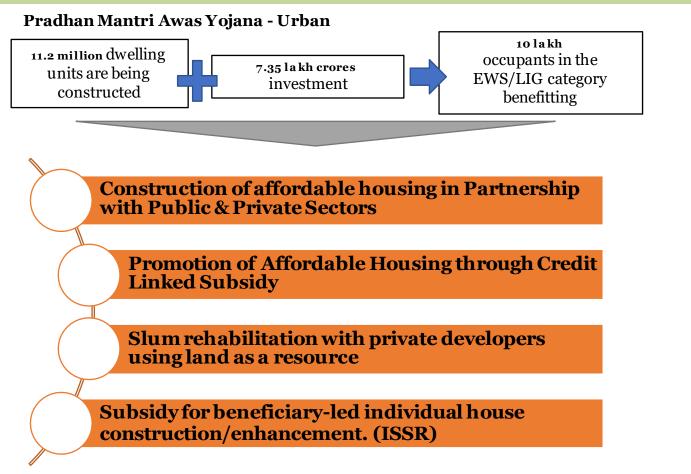
Pradhan Mantri Awas Yojna – Urban

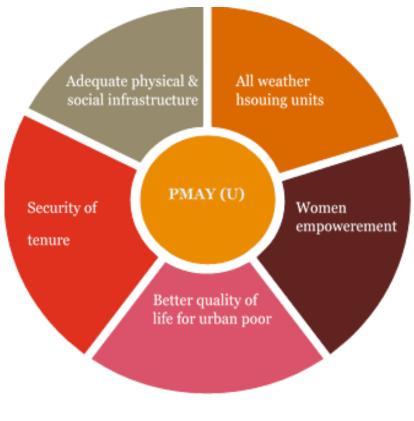
The mission is addressing the affordable housing requirement in Urban areas through following program verticals:

Subsidiary for beneficiary led individual house construction/enhancement. In-Situ Slum Redevelopment (ISSR) for Slums

Affordable housing in partnership with Public & Private Sectors

Promotion of Affordable Housing through Credit linked subsidy Beneficiary-led Individual House Construction/ Enhancement (BLC-N/ BLC-E)





Project Objectives

Key features of PMAY-U projects

Global Housing Technology Challenge-India (GHTC-India)

MoHUA has initiated the GHTC-India to identify and mainstream a basket of innovative construction technologies from across the globe for the housing construction sector that is sustainable, eco-friendly, and disaster-resilient.

Components of GHTC India

1

2

3

 Grand Expo and Conference on Alternative and Innovative Construction Technologies

• Identifying and Mainstreaming Proven Demonstrable Technologies for the Construction of Light House Projects

• Identifying Potential Future Technologies for Incubation and Acceleration Support through ASHA – India (Affordable sustainable Housing Accelerators)

Project - Chennai, Tamil Nadi

Book Launches by MoHUA under GHTC India Challenge

Compendium of Light House Project Rajkot

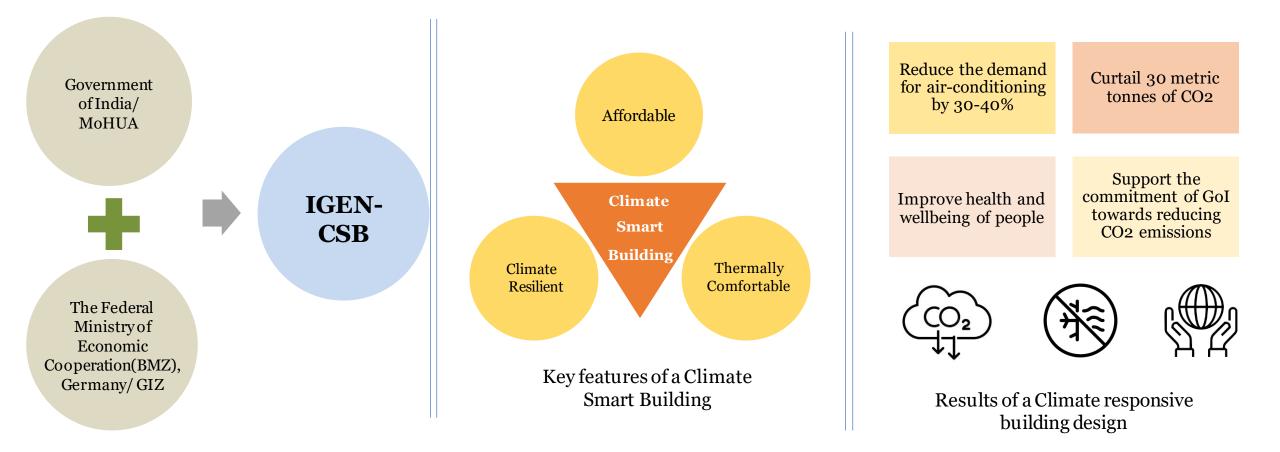
Compendium of Light House Project Chennai

Affordable Housing

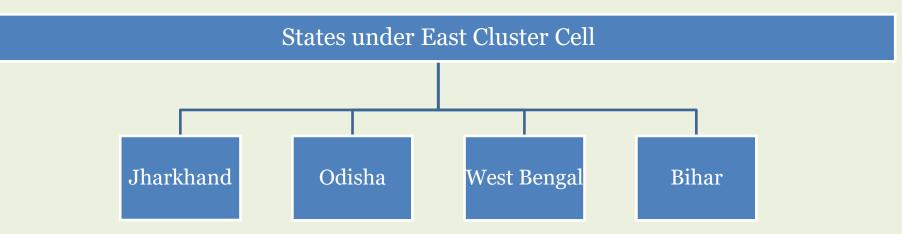
HANDBOOK

Handbook on Innovative **Construction Technologies &** Thermal Comfort in **Affordable Housing**

Compendium of 75 Trainings & Workshops under RACHNA



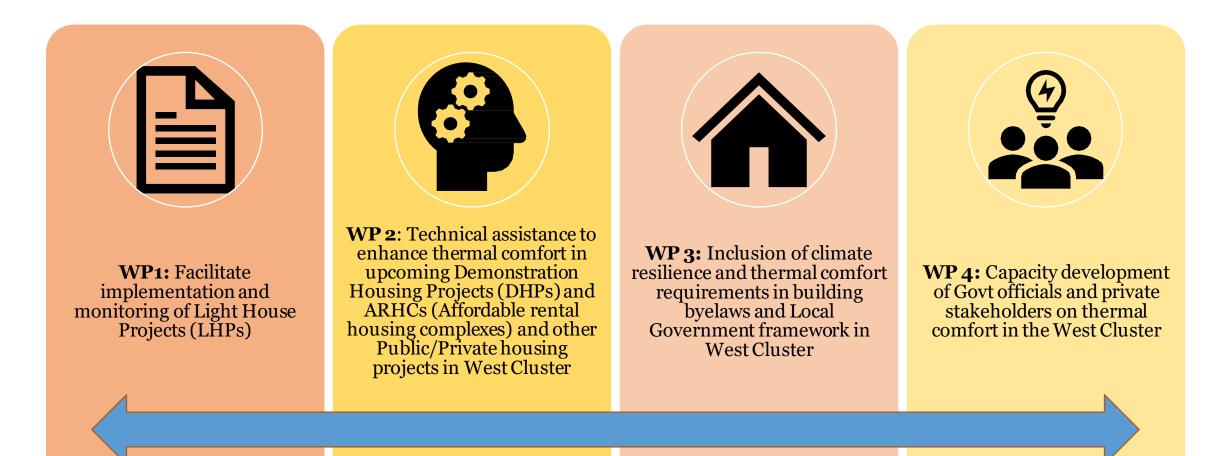
Climate Smart Buildings Programme (IGEN-CSB)



About the project-"Climate Smart Buildings (CSB): Establishment of the Cluster Cell in Ranchi, Jharkhand under Global Housing Technology Challenge-India (GHTC-India)"

The climate smart building project intends to address the majority of gaps identified in the affordable housing sector

- By introducing of thermal comfort & climate resilience in the Local Government framework through Byelaws as an overarching objective.
- In order to achieve this objective, activities like documentation of LHP construction process from a sustainability perspective, knowledge transfer & capacity building through LHPs, performance monitoring & demonstration of thermal comfort in selected housing projects among others.
 Climate Smart Buildings | LHP Ranchi | PMAY Urban



Project Objectives

DAY 1

Tea Break

DAY 1

Session 1: Innovative Construction Technologies of Light House Projects, LHP Study and Observations

....

()

New Age Innovative **Construction Technology** & LHPs

Light House Projects

- The aim of the assignment is to introduce thermal comfort into the foray of affordable housing, a critical design & thus usability aspect which unfortunately has been missing from the current nature of affordable housing in India.
- Although studies & policies like the green guidelines for PMAY projects, Eco-Niwas Samhita Part-1, Star Labelling of energy efficient homes etc have been around but what the sector really needs is specific, easy to comprehend provisions which can be mandated & enforced in a steadfast way which is exactly what this project intends to do

Light House Projects

Strategic Intent

- Seamless implementation of LHPs
- Assist in knowledge transfer through documentation of technologies used & implementation of LHPs
- Technical assistance to achieve thermal comfort in demonstration projects
- Support the implementation of thermal comfort provision in state legislature
- Capacity buildings around thermal comfort & sustainable construction

Outcome

- Successful model for the implementation & documentation of LHPs
- Databank of technologies , relevant materials in the state analyzed around various relevant parameters
- Replicable models for thermally comfortable affordable houses in Gujarat (climate sensitive to 3 climatic conditions in the state)
- Thermal comfort provisions mandated by the law
- Better grasp of thermal comfort & sustainability in general among the concerned stakeholders & general public too

What are we working on?

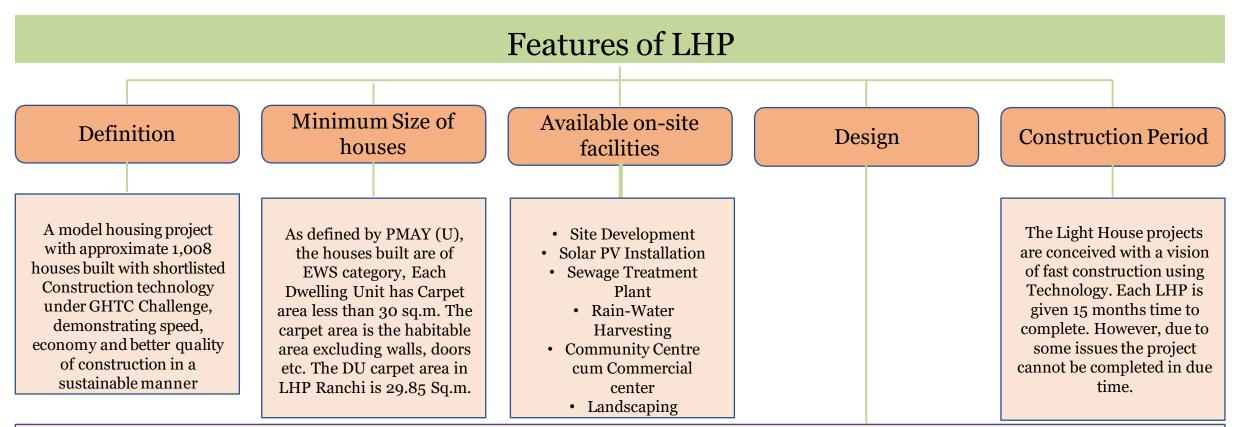
LHPs are model housing projects with houses built with shortlisted alternate technology suitable to the geo-climatic and hazard conditions of the region, an initiative under the Climate Smart Building Programme.

These projects demonstrate and deliver ready to live houses with speed, economy and with better quality of construction in a sustainable manner.

Currently the LHPs' being are implemented in six states (Uttar Pradesh, Madhya Pradesh, Gujarat, Gujarat, Jharkhand, and Tripura) of India under Global Housing Technology Challenge (GHTC) – India. These projects are constructed with modern technology and innovative processes and reduce the construction time and make a more resilient, affordable, and comfortable house for the poor.

Details of LHP Projects along with Construction Technology Used

LHP Location	TECHNOLOGY SELECTED	NUMBER OF HOUSES TO BE CONSTRUCTED
Rajkot, Gujarat	Monolithic Concrete Construction using Tunnel Formwork	1144
Indore, Madhya Pradesh	Prefabricated Sandwich Panel System	1024
Chennai, Tamilnadu	Precast Concrete Construction System – Precast Components Assembled at Site	1152
Ranchi, Jharkhand	Precast Concrete Construction System – 3D Volumetric	1008
Agartala, Tripura	Light Gauge Steel Structural System & Pre-engineered Steel Structural System	1000
Lucknow, Uttar Pradesh	PVC Stay in Place Formwork System	1040



- Designed as per the dimensional requirements mandated in the National Building Code (NBC) 2016.
- Design in concurrence with existing centrally sponsored schemes and Missions such as Smart Cities, AMRUT, Swachh Bharat (U), National Urban Livelihood Mission (NULM), Ujjwalla, Ujala, Make in India, etc.
- Structural details designed considering durability and safety requirements of applicable loads including earthquakes and cyclone and flood as applicable confirming to applicable Indian/International standards.
- Design of Cluster involves the possibility of innovative system of water supply, drainage and rainwater harvesting, renewable energy sources with special focus on solar energy.

Light House Projects

Following are the details of Construction Technologies being employed at the Light House Projects shortlisted under the Global Housing Technology Challenge (GHTC) – India

Monolithic Concrete Construction using Tunnel Formwork

- LHP Location: Rajkot, Gujarat
- No. of Houses: 1144

Prefabricated Sandwich Panel System

- LHP Location: Indore, Madhya Pradesh
- No. of Houses: 1024

Precast Concrete Construction System – Precast Components Assembled at Site

LHP Location: Chennai, Tamilnadu
No. of Houses: 1152

Precast Concrete Construction System – 3D Volumetric

- LHP Location: Ranchi, Jharkhand
- No of Houses: 1008

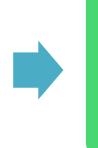
Light Gauge Steel Structural System & Pre-engineered Steel Structural SystemAgartala, Tripura

- LHP Location: Agartala, Tripura
- No of Houses: 1000

PVC Stay in Place Formwork System

- LHP Location: Lucknow, Uttar Pradesh
- No of Houses: 1040

Precast Concrete Construction System – 3D Volumetric – LHP Ranchi


An already established System for building construction in Europe, Singapore, Japan & Australia, this 3D Volumetric concrete construction is the modern method of building by which solid precast concrete structural modules like room, toilet, kitchen, bathroom, stairs etc. & any combination of these are cast monolithically in Plant or Casting yard in a controlled condition. These Modules are transported, erected & installed using cranes and push-pull jacks and are integrated together in the form of complete building unit.

Subject to the hoisting capacity, building of any height can be constructed using the technology.

Construction Process

Sequential construction in the project here begins with keeping the designed foundation of the building ready, while manufacturing of precast concrete structural modules are taking place at the factory.

Factory finished building units/modules are then installed at the site with the help of tower cranes.

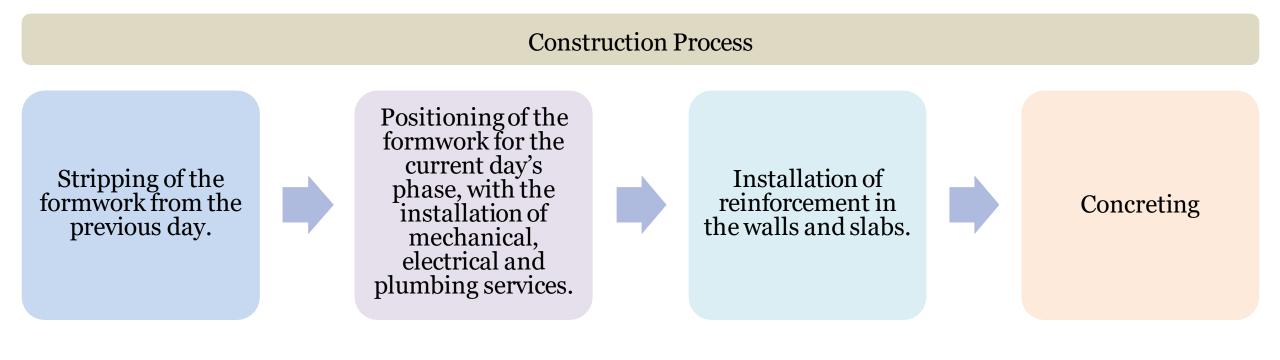
Gable end walls are positioned to terminate the sides of building. Pre-stressed slabs are then installed as flooring elements.

Rebar mesh is finally placed for structural screed thereby connecting all the elements together.

Consecutive floors are built in similar manner to complete the structure.

Precast Concrete Construction System – 3D Volumetric – LHP Ranchi

Special Features About 90% of the building work The controlled factory including finishing is complete in The monolithic casting of walls & With smooth surface it eliminates environment brings resource plant/casting yard leading to floor of a building module optimization, improved quality, use of plaster. significant reduction in reduces the chances of leakage. precision & finish. construction & occupancy time. The system has minimal material wastage (saving in material cost), Use of Optimum quantity of Use of shuttering & scaffolding All weather construction & better helps in keeping neat & clean water through recycling. materials is minimal. site organization construction site and dust free environment.



Monolithic Tunnel Formwork Technology – LHP Rajkot

In 'TunnelForm' technology, concrete walls and slabs are cast in one go at site giving monolithic structure using high-precision, re-usable, room-sized, Steel forms or molds called 'TunnelForm'. An already established System for building construction in many countries, this system intends to replace the conventional RCC Beam-Column structure which uses steel/plywood shuttering. 'TunnelForm' system uses customized engineered steel formwork consisting of two half shells which are placed together and then concreting is done to form a room size module. Several such modules make an apartment.

Monolithic Tunnel Formwork Technology – LHP Rajkot

Special Features

Facilitating rapid construction of multiple/mass modular units (similar units).

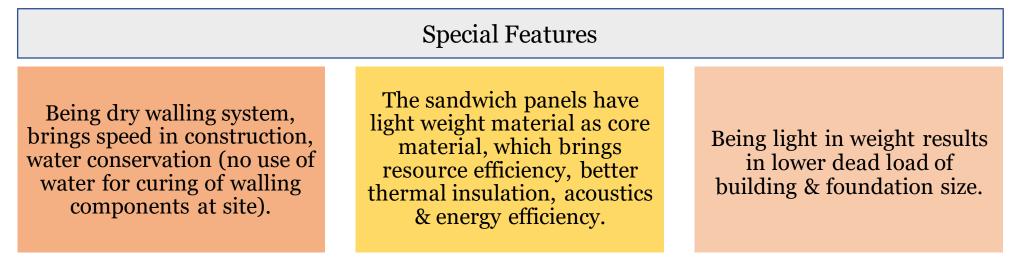
Making structure durable with low maintenance requirement.

The precise finishing can be ensured with no plastering requirement.

The concrete can be designed to use industrial by-products such as Fly Ash, Ground granulated blast furnace slag (GGBS), Micro silica etc. resulting in improved workability & durability, while also conserving natural resource

Being Box type monolithic structure, it is safe against horizontal forces (earthquake, cyclone etc.)

The large number of modular units bring economy in construction.



Prefabricated Sandwich Panel System – LHP Indore

- An already established System for building construction in China, Australia, African and Gulf countries, this factory made Prefabricated Sandwich Panel System is made out of cement or calcium silicate boards and cement mortar with EPS granules balls, and act as wall panels. These replace conventional brick & mortar walling construction practices and can be used as load-bearing and non-load bearing walling for residential and commercial buildings. For buildingshigher than single storey, the system can be used either with RCC or steel framed structure.
- Under this LHP, houses are being constructed using Prefabricated Sandwich Panel System with Pre-Engineered Steel Structural System.
- In this system the EPS Cement Panels are manufactured at the factory in controlled condition, which are then dispatched to the site. The panels having tongue and groove are joint together for construction of the building.

Precast Concrete Construction System – Precast Components Assembled at site – LHP Chennai

An already established technology for building construction, Precast concrete construction is a system where the individual precast components such as walls, slabs, stairs, column, beam etc, of building are manufactured in plant or casting yard in controlled conditions. The finished components are then transported to site, erected & installed.

The technology provides solution for low rise to high rise buildings, especially for residential and commercial buildings.

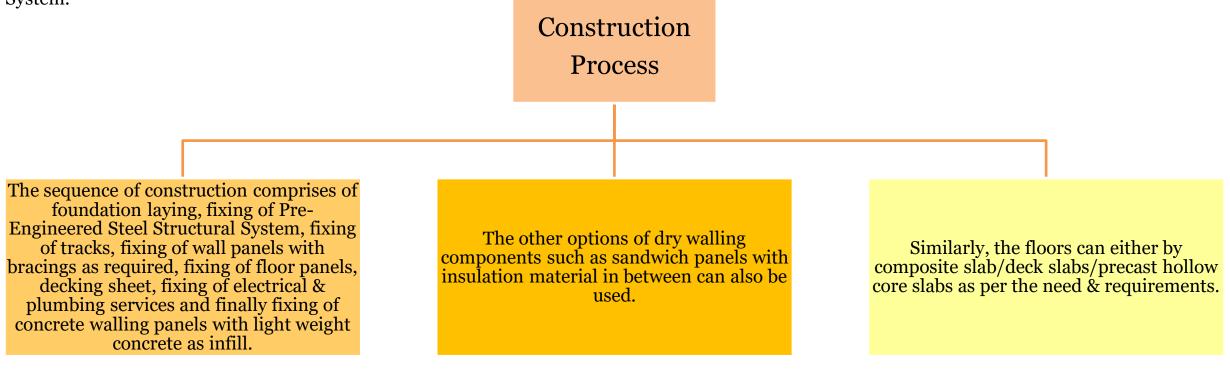
The construction process comprises of manufacturing of precast concrete Columns, Beams and Slabs in steel moulds.

The reinforcement cages are placed at the required position in the moulds. Concrete is poured and compaction of concrete is done by shutter/ needle vibrator. Casted components are then moved to stacking yard where curing is done for requited time and then these components are ready for transportation and erection at site.

These precast components are installed at site by crane and assembled through in-situ jointing and/or grouting etc.

Precast Concrete Construction System – Precast Components Assembled at site – LHP Chennai

Special Features					
Nearly all components of building work are manufactured in plant/casting yard & the jointing of components is done In-situ leading to reduction in construction time.	The controlled factory environment brings resource optimization, improved quality, precision & finish.	The concrete can be designed with industrial by-products such as Fly Ash, Ground granulated blast furnace slag (GGBFS), Micro silica etc. resulting in improved workability & durability, while also conserving natural resources.	Eliminates use of plaster.		
Helps in keeping neat & clean construction site and dust free environment.	Optimum use of water through recycling.	Use of shuttering & scaffolding materials is minimal.	All weather construction & better site organization.		



Light Gauge Steel Structural System & Pre – engineered Steel Structural System – LHP Agartala

An already established System for building construction in Japan, Australia & North America; Light Gauge Steel Frame (LGSF) System uses factory made galvanized light gauge steel components. The components/sections are produced by cold forming method and assembled as panels at site forming structural steel framework up to G+3 building. LGSF is used in combination with pre-engineered steel structural system for buildings above G+3 for longevity, speedier construction, strength and resource efficiency.

Under this Light House Project, houses are being constructed using Light Gauge Steel Frame System (LGSF) with Pre-Engineered Steel Structural System.

Light Gauge Steel Structural System & Pre – engineered Steel Structural System – LHP Agartala

Special Features

High strength to weight ratio. Due to light weight, significant reduction in design earthquake forces is achieved. Making it safer compared to other structures. Fully integrated computerized system with Centrally Numerical Control (CNC) machine primarily employed for manufacturing of LGSF sections provide very high Precision & accuracy.

Construction being very fast, a typical four storied building can be constructed within one month.

Structure being light, does not require heavy foundation

Structural element can be transported to any place including hilly areas to remote places easily making it suitable for far flung regions including difficult terrains.

Structure can be shifted from one location to other without wastage of materials.

Steel used can be recycled multiple times

The system is very useful for post disaster rehabilitation work.

PVC Stay in Place Formwork System – LHP Lucknow

- Already in use in Canada & Australia, the plant manufactured rigid poly-vinyl chloride (PVC) based polymer components serve as a permanent stay-in-place finished form-work for concrete walls. The formwork System being used acts as pre-finished walls requiring no plaster and can be constructed instantly. This System is suitable for residential and commercial buildings of any height from low rise to high rise. In order to achieve speedier
 - construction, strength and resource efficiency, the composite structure with Pre-Engineered Steel Structural System as structural members is being used in the present project.

Construction Process

Construction is done in a sequential manner where at first, the Prefabricated PVC Wall panels and Pre-Engineered Steel Structural Sections as per the design are transported to the Site.

Then, these Sections are erected on the prepared foundation using cranes and required connections.

Floor is installed using decking sheet. Once the structural frame and floor is installed and aligned, wall panels are fixed on decking floor.

Upon installment of wall panels, flooring and ceiling, the finishing work is executed.

PVC Stay in Place Formwork System – LHP Lucknow

Special Features

Having formwork already as part of system, the construction of building is faster as compared to conventional buildings. The formwork needs some support only for alignment purpose.

In case of concrete as filling material, the curing requirement of concrete is significantly reduced, thus saving in precious water resources.

The formwork system does not have plastering requirement & gives a very aesthetic look.

Deutsche Gesellschaft für Internationale Zusammenarbeit (SIZ) GmbH

i i I

000

03 **Thermal Comfort** Analysis & **Recommendations on** LHPs and Demo **Projects**

CASE STUDY OF DEMO PROJECTS

The Demonstration Housing Projects

Under the Climate Smart Buildings Project in Eastern Cluster, the CSB Cell have identified and are supporting 1 of upcoming affordable housing projects in Ranchi to achieve minimum Thermal Comfort standards of MoHUA – GoI.

Assessment reports on Demonstration Housing Project's performance have been made that highlight on results, conclusions, and recommendations for enhanced thermal comfort and energy efficiency.

ENS compliance and improvements for Demonstration Housing Project

Utopian Heights AHP project, Ranchi

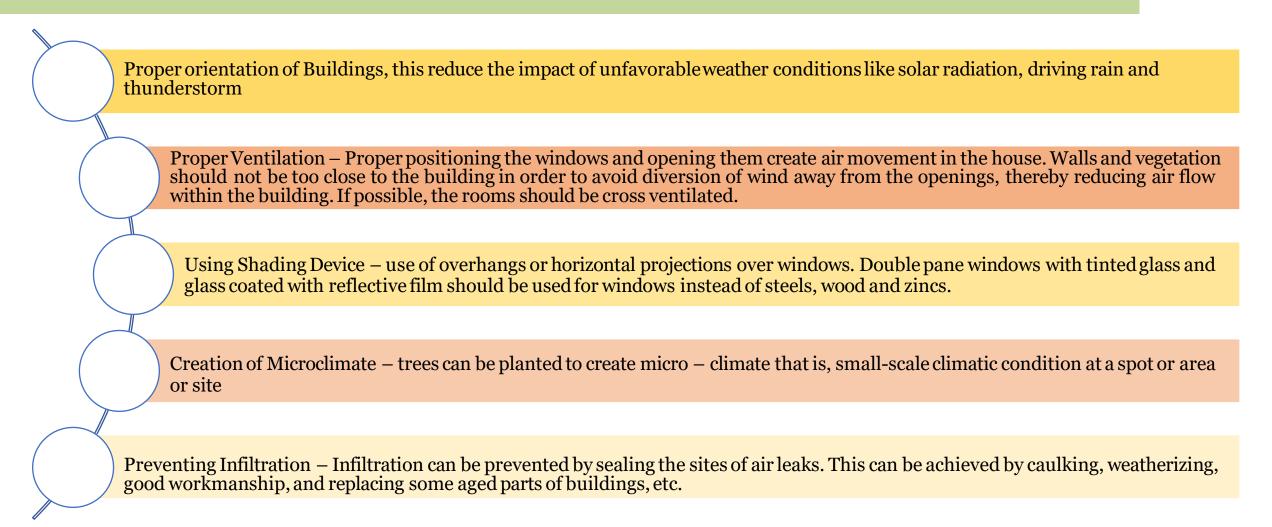
It is recommended to provide roof insulation in order to comply with max. thermal transmittance value for roof and to increase the comfortable hours with in the units.

As Designed

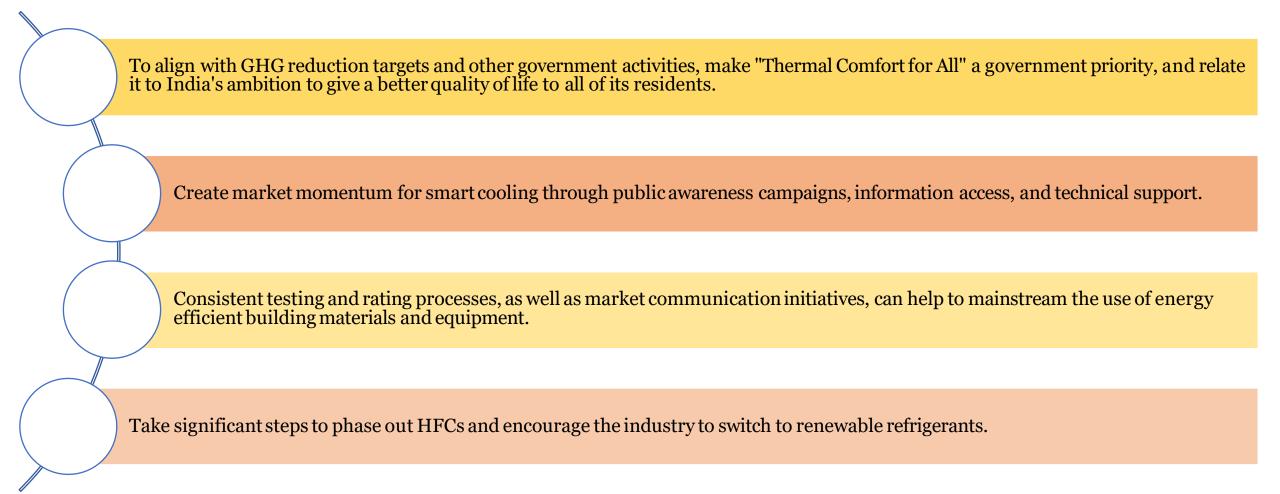
Element	U Value	RETV	ENS Part 1 Complianc e	ENS Score
Wall AAC + Plaster	0.678	8 6 9	Var	112
Window Aluminum+ single Glazed	5.8	8.98	Yes	
Roof 150 mm Concrete Slab	2.73	-	No	

With Improvements

Element	U Value	RETV	ENS Part 1 Compliance	ENS Score
Wall AAC + Plaster	0.678	0.00	N	
Window Aluminum+ single Glazed	5.8	8.98	Yes	117
Roof 150 mm Concrete Slab + 50 mm EPS insulation	0.59	-	Yes	

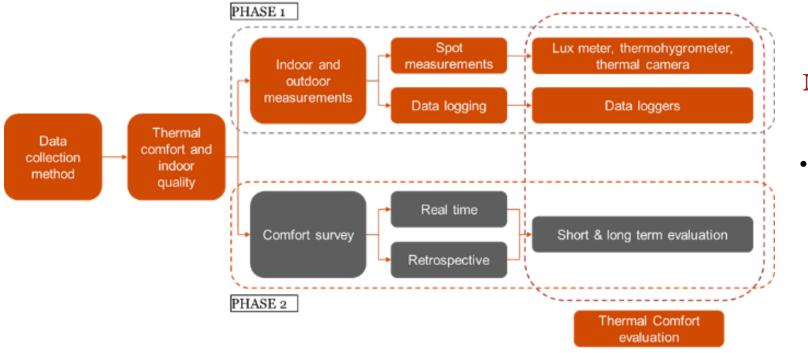


Recommendations



Recommendations

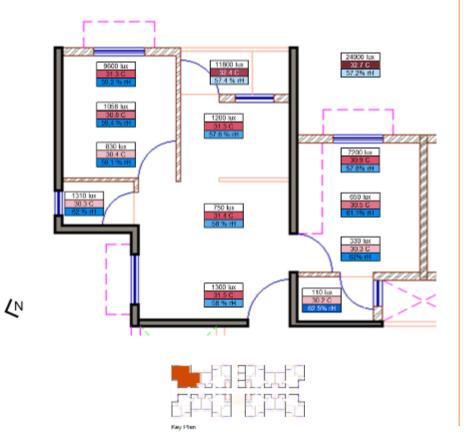
CASE STUDY OF LHP RAJKOT

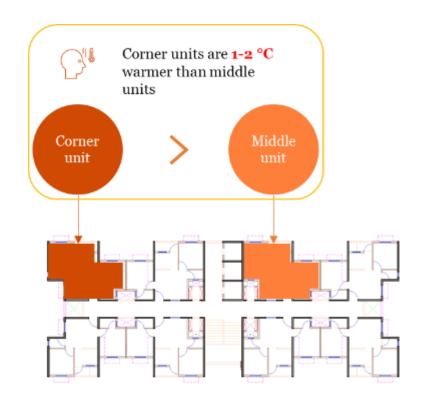


The LHP in Rajkot constructed with Monolithic Tunnel formwork technology has been planned and constructed with such specification and layout which would give better thermal comfort compared to conventional construction. GIZ was assigned the task of studying aspect of thermal comfort in LHP project.

Methodology for monitoring and evaluation

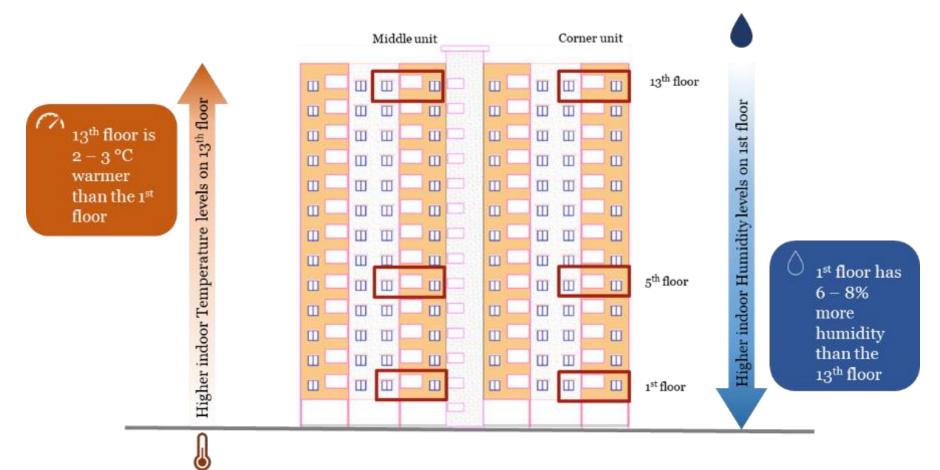
- On-site spot measurements
 - dataloggers,
- comparative graphs, and
 - a comfort chart



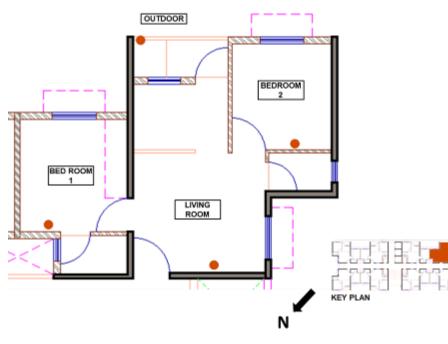


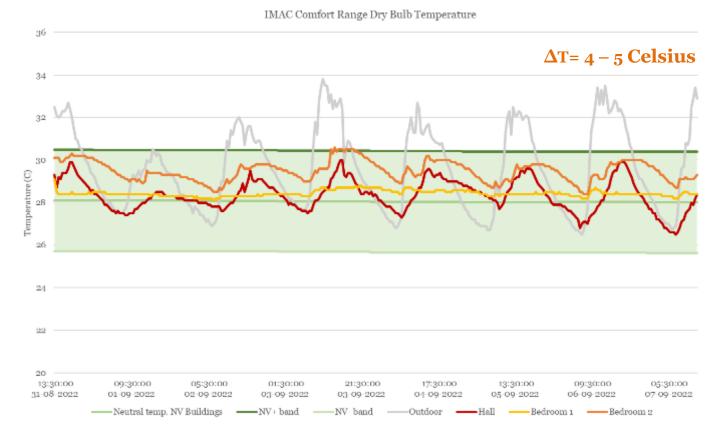
On-site spot measurements

Findings



Findings (Cont.)





Datalogger placement

Location: Tower 8 | 1st floor | Corner unit Occupancy: 9 am to 5 pm Operation mode: No comfort system, No lighting, Natural Ventilation

Findings

The data loggers readings from Wednesday, 31st August to 7th September 2022. Climate Smart Buildings | LHP Ranchi | PMAY Urban

Findings (Cont.)

of the time the indoor temperatures stayed within the IMAC comfort band

Rooms with exposed RCC walls react more to the outdoor variation in temperature...

...such rooms are 1 - 2 °C warmer than the rooms without exposed RCC walls.

RCC walls have no insulation properties, and they heat and cool more rapidly based on outdoor conditions

Key performance features of the Light House Project- Rajkot

Saved kWh of Power due to reduction in construction time]	215051 kWh saved. Typical saving is 4.72 kWh/Sq. mtr compared to building construction using conventional method.
% reduction in cost of construction	10% [Faster construction speed leading to reduction in construction cost]
% reduction in water use	26.67% (For Concrete), Approx 70% (For Masonary Work)
% reduction in Construction waste	10% Approx.[Usage of Tunnel Formwork causing reduction in construction waste]
% Reduction in use of energy	16.67%
% Reduction in embodied energy	25%

Comparation between building envelope of conventional building vs LHP, Rajkot

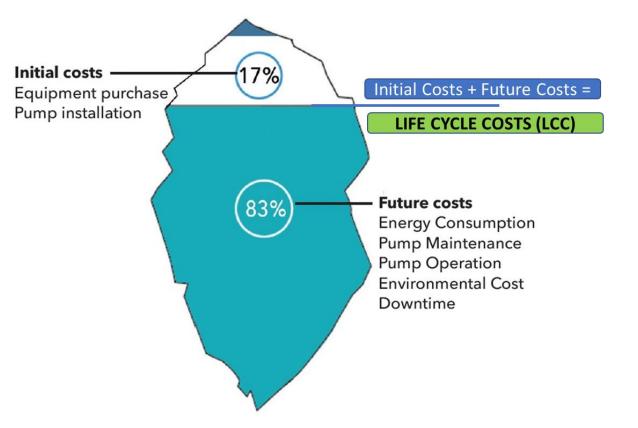
Conventional Construction Envelope Details

LHP Rajkot Construction Envelope Details

Envelope Type	Conventional Case - Construction Configuration	Section	U Value*	Envelope Type	LHP Case - Construction Configuration	Section	U Value*
Wall	Interior Surface Film resistance + Internal Cement Mortar (12 mm) + Brick Wall (230mm) + External Cement Mortar (12 mm) + Exterior Surface film		1.97 W/m2K	Wall	Interior Surface Film resistance + Internal Cement Mortar (10 mm) + AAC Block (200mm) + External Cement Mortar (30 mm) + Exterior Surface film resistance		0.68 W/m2K
resistance				Interior Surface Film resistance + RCC slab (160 mm) + screeding (55 mm) +		2.74	
Roof	Interior Surface Film resistance + External Cement Mortar (18mm) + RCC		2.78	Roof	External Cement Mortar (50mm) + China mosaic + Exterior Surface film resistance		W/m2K
	slab (150mm) + Internal Cement Mortar (12mm) + Exterior Surface film resistance		W/m2K			ICEC	
Fenestration & Glazing	Steel framed Single Glazing Unit (SGU) with 5mm glass, SHGC = 0.84, VLT = 0.89		6.2 W/m2K	Fenestration & Glazing	uPVC framed SGU with 5mm glass thickness, SHGC = 0.83, VLT = 0.89		5.9 W/m2K
Void	Assumed SHGC = 1, VLT = 1		7W/m2K	Void	Assumed SHGC = 1, VLT = 1		7W/m2K
RETV	Residential Envelope Transmittance Value (North-South Blocks)		16.64 W/m2	RETV	Residential Envelope Transmittance Value (North-South Blocks)		14.32 W/m2

...

Life Cycle Cost and its impact on Carbon Emission

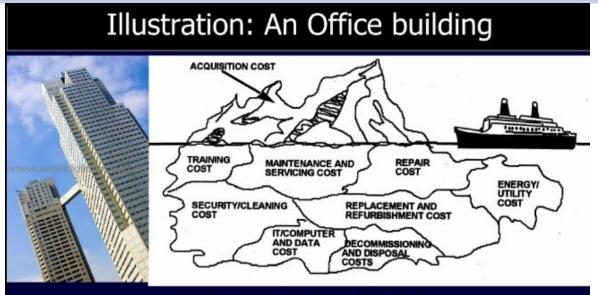


Life Cycle Cost

Life cycle costing is a method of economic analysis directed at all costs related to constructing, operating, and maintaining a construction project over a defined period of time.

Why LCC matters in sustainable building

Sustainable/green technology in building in commonly more expensive than its traditional counterpart. However, it is more energy efficient, lower operation and maintenance cost. The Energy saving, O&M feature occur over the life-time of the building. Therefore, It is essential to use the analysis which recognizes the cost saving which spread over the life-time – the Life Cycle Cost (LCC) analysis



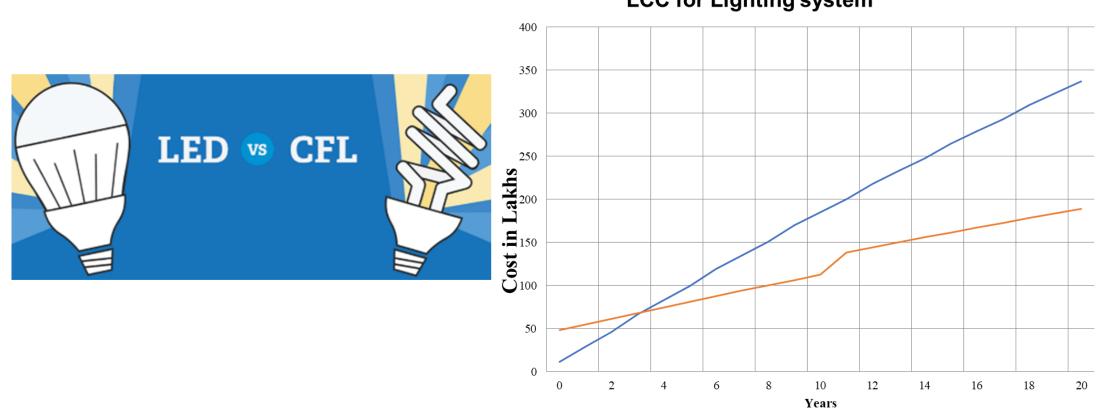
Why LCC matters in sustainable building

Office building: 1: 5 : 200*

- 1 = Construction Cost
- 5 = Maintenance and Building Operating Costs
- 200 = Business Operating Costs

*source: The Royal Academy of Engineering

Total LCC = (Investment cost + operation cost + Maintenance + Replacement cost + Disposal cost) – Salvage Value



LCC of CFL vs LED

LCC for Lighting system

DAY 1

Q&A Session on New & Innovative technologies and Thermal Comfort

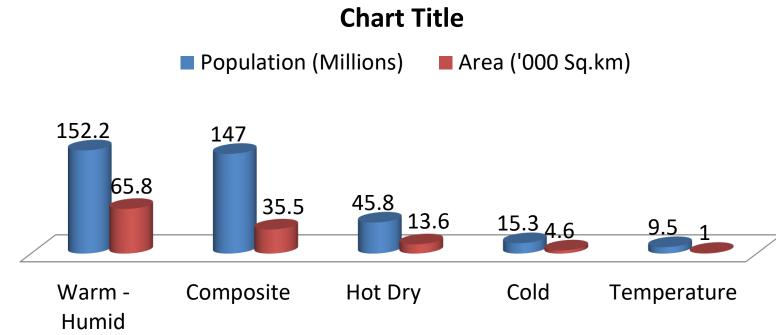
DAY 1

Session 2: Importance of Thermal Comfort

....

1.1

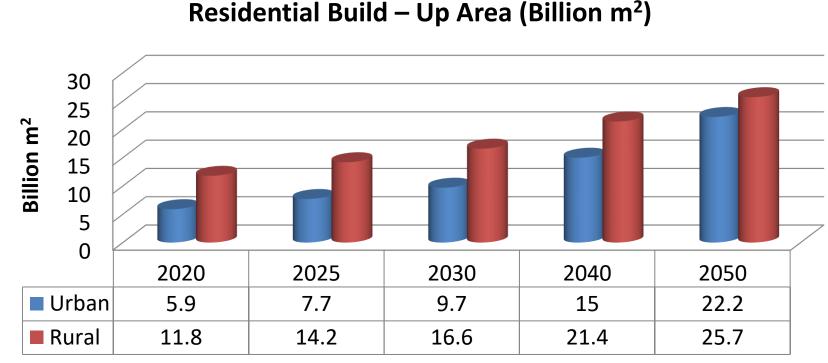
05



Thermal Comfort & Cooling Demand

- According to the graph, the major Indian metropolitan areas with urban populations (which make up 35% of the country's total population) are located in warm, humid, and mixed climates.
 - Every year, high cooling degree days are experienced by residents of the cities located in these climate zones and the hot, dry climate.

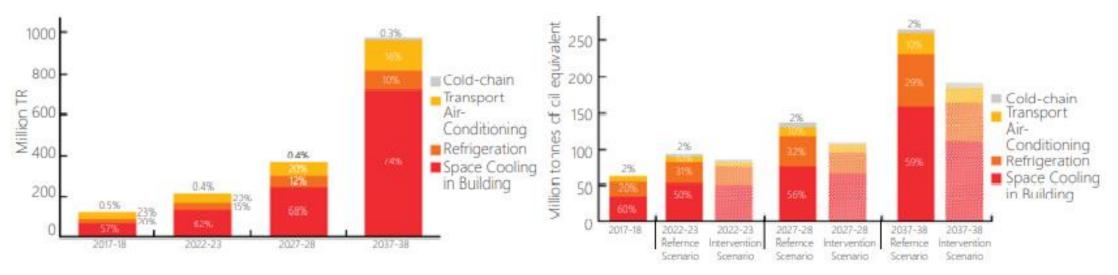
Population and area distribution in the five climate zones of India. Source: "Census 2011", Government of India, (2011), available at: http://www.censusindia.gov.in/2011census/ dchb/DCHB.html



Thermal Comfort & Cooling Demand

Projected increase in residential built-up area in urban and rural India. Source: ICAP

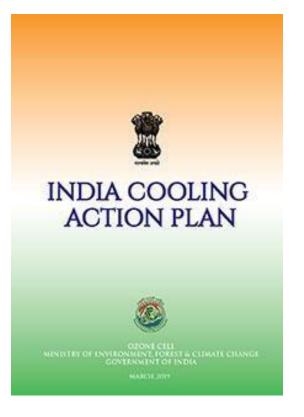
- Projections of residential built-up area expansion in both urban and rural India are shown in Graph.
- Between 2020 and 2050, it is predicted that the total area of built-up urban residential space will rise by a factor of more than three.
- Over three decades, it is anticipated to increase from 5.9 billion square metres to 22.2 billion square metres (2020-2050).
- In addition, over the same period, the per capita residential built-up area in Indian cities will rise from 12.6 sq. m. to 24.2 sq. m. (MOEFCC, 2019).



Thermal Comfort & Cooling Demand

By 2050, only around two-thirds of our metropolitan building stock will have been constructed. Consequently, our new development must take into account both our current and future cooling needs. To make this happen, it is essential to comprehend how our cooling demand is changing. According to the India Cooling Action Plan, the demand for cooling is expected to increase eight times between 2017–2018 and 2037–2038. In just two decades, the demand for the building sector alone will increase by up to 11 times from the baseline.

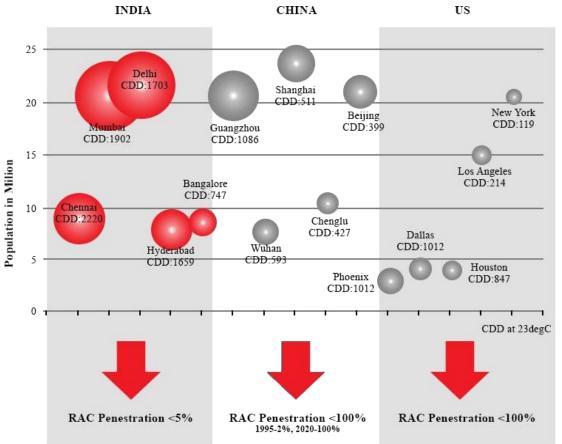
Above: Sector-wise growth in cooling demand; Below: India's Total Primary Energy Supply (TPES) for cooling. Source: India Cooling Action Plan (redrawn)



Need for Thermal Comfort in Buildings: India Cooling Action Plan

- 1. 20-25% reduction of cooling demand across various sectors by 2037-2038
- 25-40% reduction in cooling energy requirements by 2037-2038
- 3. 25-30% reduction in refrigerant demand by 2037-2038
- 4. Training and certification of 1,00,000 service technicians by 2022-2023
- 5. Recognizing "cooling and related areas" as a thrust area of research

Source: Ministry of Environment, Forest & Climate Change, Government of India. (2019, March). India Cooling Action Plan. Retrieved from http://ozonecell.nic.in/wp-content/uploads/2019/03/INDIA-COOLING-ACTION-PLAN-e-circulation-version080319.pdf

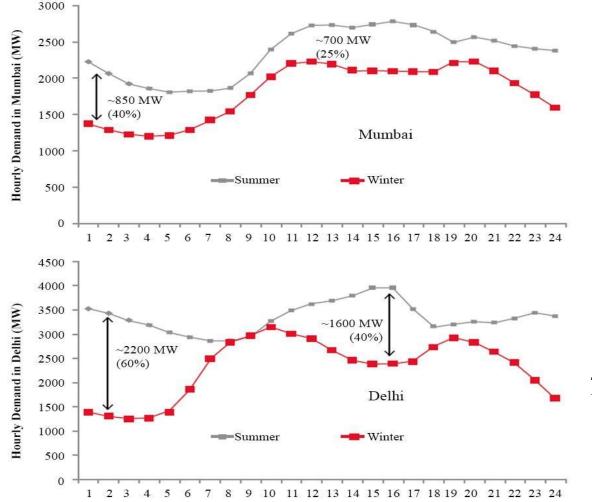


Need for Thermal Comfort in Buildings: International Perspective

Cooling Demand in India, China, and the US

- To combat uncomfortable conditions
- Leads to increased peak
- Leads to higher consumption

Source: Sustainable and Smart Space Cooling Coalition (2017). Thermal Comfort for All – Sustainable and Smart Space Cooling. New Delhi: Alliance for Energy Efficient Economy



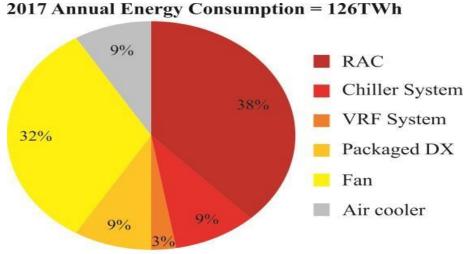
Need for Thermal Comfort in Buildings: Peak Demand

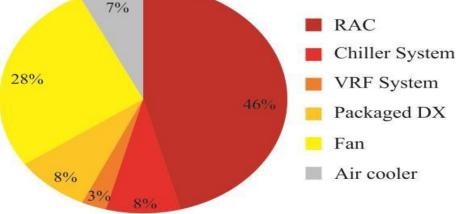
- Summer and Winter Day Profile of Electricity use
- Mumbai and Delhi Comparison
- Leads to higher consumption

Late-night 850 MW to late afternoon 700 in Mumbai Late-night 2200 MW to late afternoon 1600 in Delhi

Source: Phadke, A., Abhyankar, N., & Shah, N. (2014). Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges.

 $\underline{https://international.lbl.gov/publications/avoiding-100-new-power-plants}$




Need for Thermal Comfort in Buildings: Consumption & Emission

- Total Consumption 126 TWh and 124 MTCO_{2e}
- Room Air Conditioners 48.8 TWh (38%) consumption
- Room Air Conditioners 57.0 MTCO_{2e} (46%) Carbon Emission

Source: Ministry of Environment, Forest & amp; Climate Change, & amp; Government of India. (2019, March). India Cooling Action Plan. Retrieved from http://ozonecell.nic.in/wp-content/uploads/2019/03/INDIA-COOLING-ACTION-PLAN-e-circulation-version080319.pdf

2017 Annual Carbon Emission = 124 mtCO2e

Need for Thermal Comfort in Buildings: Consumption & Emission

- In 2017, approximately 272 million
- households were estimated in India
- Expected to increase to 328 by 2027
- 386 million by 2037

Source: Ministry of Environment, Forest & amp; Climate Change, & amp; Government of India. (2019, March). India Cooling Action Plan. <u>Retrieved from http://ozonecell.nic.in/wp-</u> content/uploads/2019/03/INDIA-COOLING-ACTION-PLAN-ecirculation-version080319.pdf

- In 2017, approximately 8% of the households were estimated to have room air conditioners
- Anticipated to rise to 21% by 2027-28
- And 40% by 2037-38

- In 2017, the estimated commercial floor was around 1.2 million sqft
- Is expected to grow about 1.5 to 2 times by 2027-2028
- 2.5 to 3 times by 2037-38, respectively

....

 $\mathbb{H}\mathbb{H}$

Factors affecting Thermal Comfort and Cooling Demand

Factors affecting Thermal Comfort

PHYSIOLOGICAL FACTORS

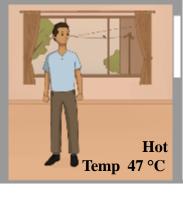
The factors which are independent from weather and surrounding environment of the building. And are very subjective and depend on person to person

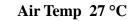
PHYSICAL FACTORS

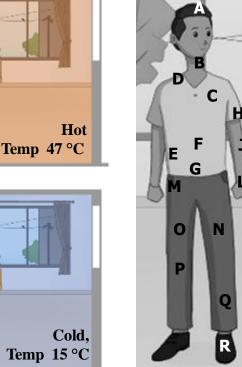
The factors which are dependent on weather and surrounding environment of the building. Some of which can be managed

PHYSICAL FACTORS

AIR TEMPERATURE – the temperature of the	<u>RADIANT TEMPERATURE – the heat that</u>	
air surrounding a body	<u>radiates from a warm object</u>	
The ideal temperature for sedentary work is usually	Heat can be generated by equipment, which raises the	
between 20°C and 26°C	temperature in a specific region.	
	HUMIDITY – the amount of evaporated water in the air Air-conditioning can easily attain ideal relative humidity values of 40 percent to 70 percent.	

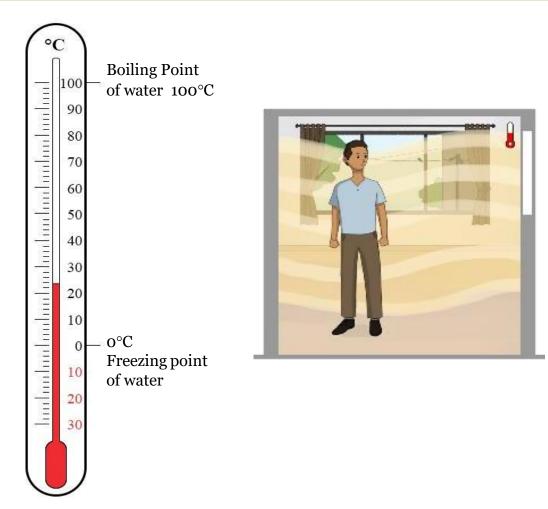






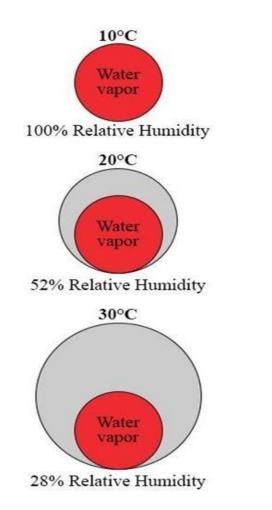
Thermal Comfort – Cold – Neutral - Warm

Body Part	Skin Location	Cold (15 °C)	Neutral (27°C)	Hot (47 °C)
Α	Forehead	31.7	35.2	37
В	Back of Neck	31.2	35.1	36.1
С	Chest	30.1	34.4	35.8
D	Upper Back	30.7	34.4	36.3
Е	Lower Back	29.2	33.7	36.6
F	Upper Abdomen	29	33.8	35.7
G	Lower Abdomen	29.2	34.8	36.2
Н	Tricep	28	33.2	36.6
J	Forearm	26.9	34	37
L	Hand	23.7	33.8	36.7
М	Hip	26.5	32.2	36.8
N	Side thigh	27.3	33	36.5
0	Front thigh	29.4	33.7	36.7
Р	Back thigh	25.5	32.2	36
Q	Calf	25.1	31.6	35.9
R	Foot	23.2	30.4	36.2



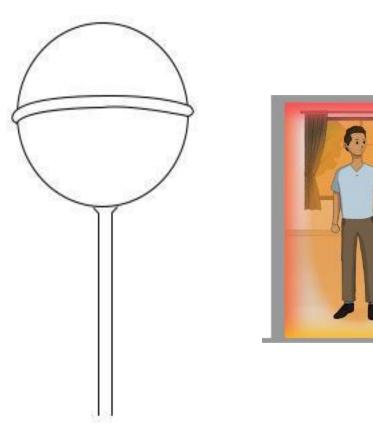
Factors Affecting Thermal Comfort – Air Temperature

- Temperature of the air surrounding the Environment (Dry Bulb Temperature) – DBT)
- Measured in Degrees Celsius (°C), by a thermometer freely exposed to the air, but shielded from radiation and moisture.
- Affects the rate of Evaporation on skin surface of building occupants.



Factors Affecting Thermal Comfort – Relative Humidity [RH]

- It is defined as %ge of Amt. of water vapour present in air to max. amount of water vapour that air can hold at specific temperature and pressure.
- Affected by DBT and Pressure of Air.
- Higher the RH of the air, hotter it will feel for Building Occupants.



Factors Affecting Thermal Comfort – Mean Radiant Temperature [MRT]

- MRT is defined as uniform temperature of an imaginary enclosure in which the radiant heat transfer from the human body is equal to the radiant heat transfer in the actual non-uniform enclosure.
- Depends on ability of a surface to emit the incident heat, also known as emissivity of the material
- Calculated using Globe Temp. (T_g) & Air Temp.(T_a).

Factors Affecting Thermal Comfort – Air Speed

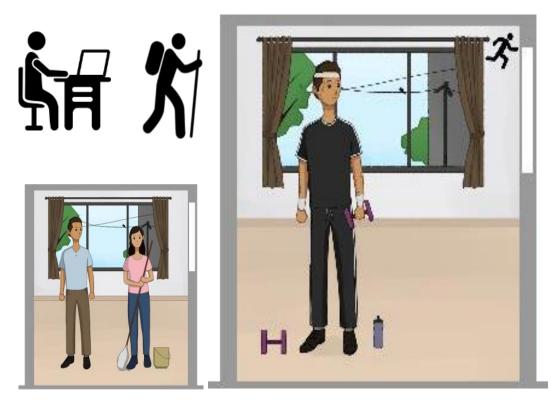
- Air Speed is defined as the average speed of the air surrounding an occupant, with respect to location, and time.
- Measured in Meter per second (m/s)
- Elevated air speeds can be used to improve thermal comfort beyond the maximum limit of temperature established by codes and standards (ASHRAE, 2021)

Factors Affecting Thermal Comfort – Clothing Value

- Can be defined as "The resistance to sensible heat transfer provided by clothing ensemble".
- The insulation provided by an individual garment includes effective resistance of the garment material and the thermal resistance of the air layer trapped between the garment and the skin (CIBSE, 2015).
- Clothing Insulation Value (clo I_{cl}).

CLOTHING	Clo
T-shirts, shorts, Light socks, Sandals	0.30
Shirt, Trousers socks, Shoes	0.70
Jacket, Blouse, Long skirt, stockings	1.00
Trousers, Vest, Jacket Coat, Socks Shoes	1.50

CLOTHING LEVELS & INSULATION

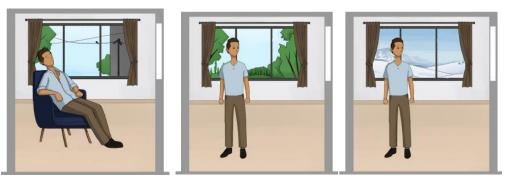


Factors Affecting Thermal Comfort – Metabolic Rates

- Metabolic Rate can be defined as level of transformation of chemical energy into heat and mechanical work by metabolic activities within an organism.
- Expressed in met units where 1 met = 58.2 W/m2.
- Depends on activity level, age, fitness level, etc. of a person.

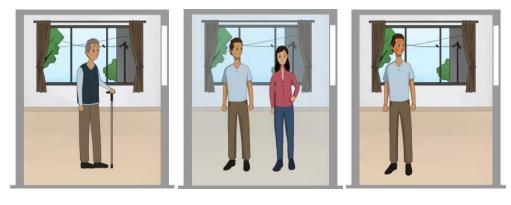
ACTIVITY	Met
Seated, Relaxed	1.0
Sedentary Activity (office, dwelling, school, laboratory)	1.2
Standing, Light Activity (shopping, laboratory, light industry)	1.6
Standing, Medium activity (shop assistant, domestic work, machine work)	2.0

METABOLIC RATE



Factors affecting Thermal Comfort - Others

- Acclimatization
- Short-term physiological adjustments
- Long-term endocrine adjustments
- Body shape and fat
- Age and gender
- Status of health


Short term physiological adjustments

Age

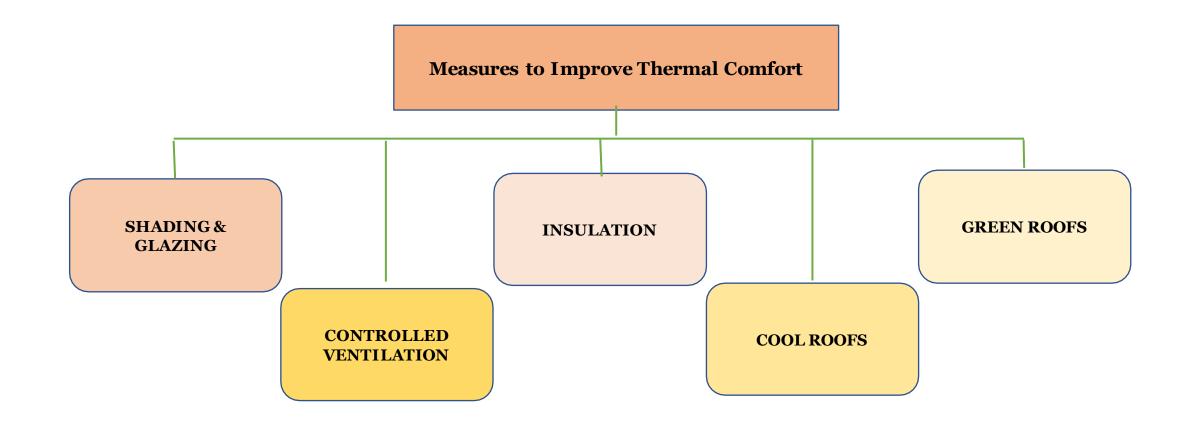
Long term physiological adjustments

Health &

Wellbeing

Gender

[]/ **Contemporary Approaches for** achieving Thermal **Comfort in buildings**



Measures to Improve Thermal Comfort

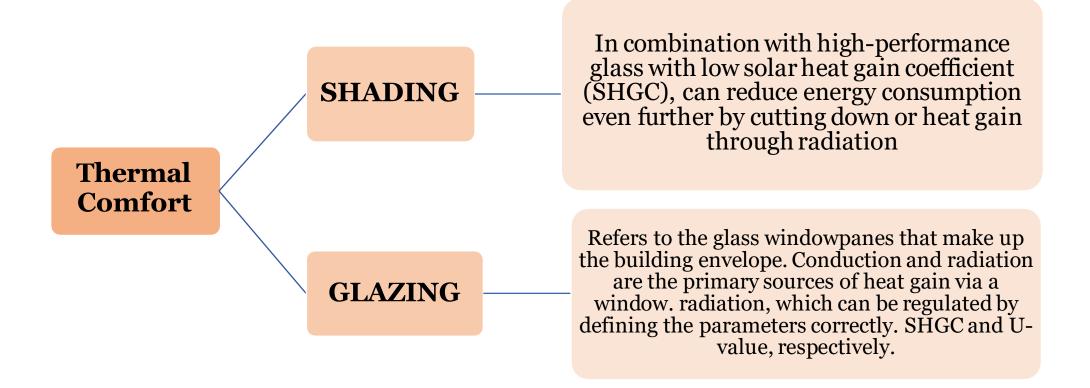
Shading & Glazing

Shading reduces internal heat gain through coincident radiation.

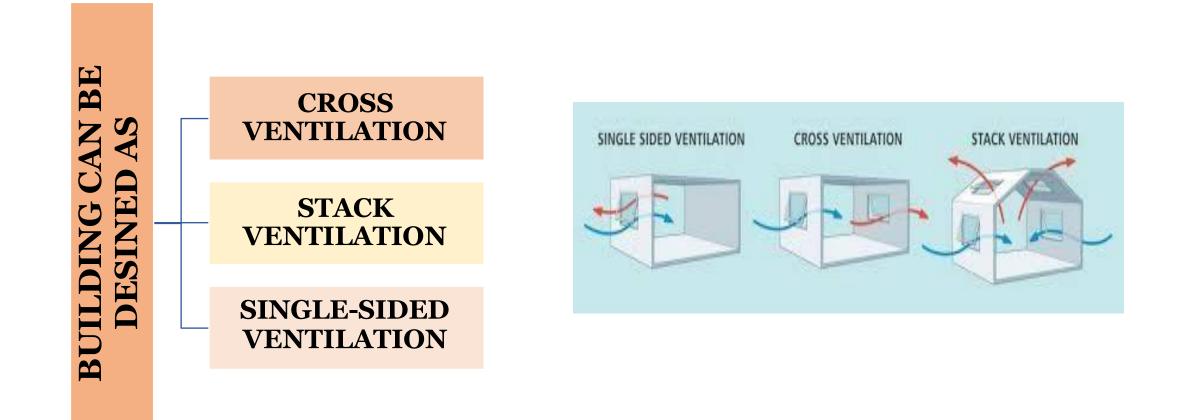
VARIOUS METHODS TO SHADE WINDOWS					
Overhangs	Awnings	Louvers	Vertical Fins	Light Shelves	Natural Vegetation

These can reduce cooling energy consumption by 10-20%

The shading mechanism can be fixed or movable (manually or automatically) for allowing v	arying
levels of shading based on	
1. the sun's position and	
2. movement in the sky	



Shading & Glazing



Controlled Ventilation

Controlled Ventilation

Designing windows and vents to dissipate warm air and allow the ingress of cool air can reduce cooling energy consumption by 10-30%

Air Velocity range between 0.5 to 1 D m/s

Drops temperature at about 3 ^OC at 50% relative Humidity

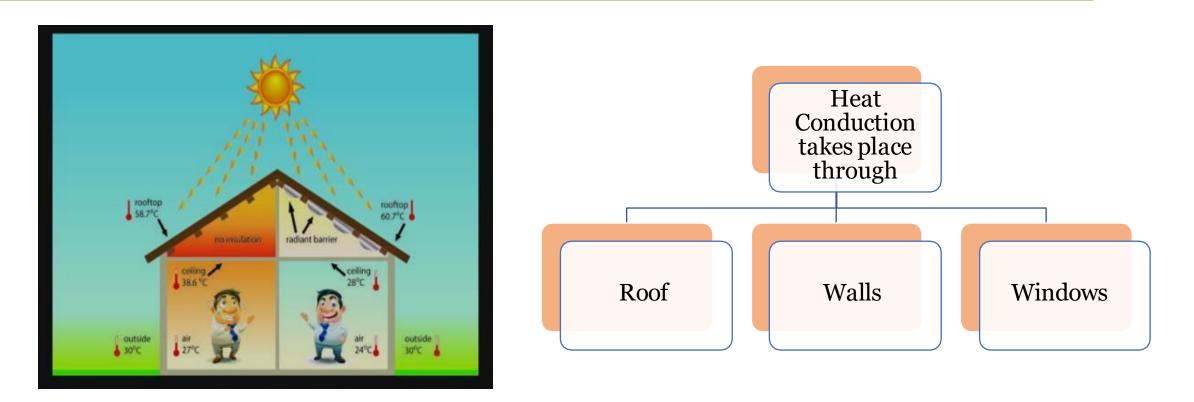
AIR VELOCITY OF 1 m/s			
Office Environment	Too High		
Home Environment	Acceptable (Especially if there is no resource to active air conditioning.)		

Controlled Ventilation

Natural ventilation takes advantage of the differences in air pressure between warm air and cool air, as well as convection currents, to remove warm air from an indoor space and allow fresh cooler air in.

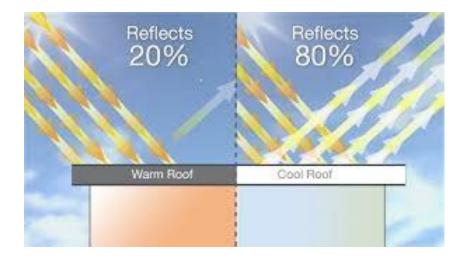
This also has the added advantage of cooling the walls and roofs of the buildings that hold significant thermal mass, further enhancing the thermal comfort of the occupants

NATURAL VENTILATION			
With Breeze Air	Works Best	Even in hot-dry and warm-humid climate zones where some air-	
Absence of natural breeze	Fans can be used to improve the flow of cool air	conditioning may be required during peak Thermal Comfort for All summer, buildings can be designed to operate in a mixed mode to enable	
Natural ventilation promotes the temperature, called ad	night ventilation and natural ventilation during cooler seasons		



Insulation

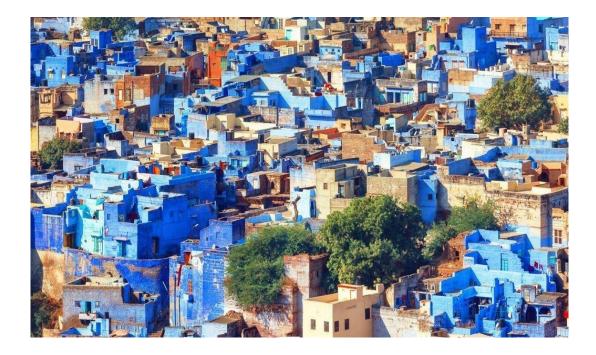
An insulating material can resist heat transfer due to its low thermal conductivity. Insulating walls and the roof can reduce cooling energy loads by up to 8%



Cool Roofs

Cool roofs are one of the passive design options for reducing cooling loads in buildings. Cool roofs reflect most of the sunlight (about 80% on a clear day)

When sunlight is incident on a dark roof	When Sunlight is incident on a cool roof
38% heats the atmosphere	10% heats the environment
52% heats the city air	8% heats the city air
5% is reflected	80% is reflected
	1.5% heats the building


Cool Roofs

In the summer, a typical cool roof surface temperature keeps 25-35°C cooler than a conventional roof, lowering the internal air temperature by roughly ₃-5°C and improving the thermal performance.

The comfort of the inhabitants is improved, and the roof's lifespan is extended.

Cool roofs increase the durability of the roof itself by reducing thermal expansion and contraction.

Apart from helping enhance the thermal comfort in the top floor and helping reduce air-conditioning load, cool or white roof or pavements also offer significant reduction in urban heat island effect

The cities of Jodhpur and Jaipur are from extremely hot state of Rajasthan, where most of the city homes are painted in light blue and light pink colours, are examples of practical application of this age-old traditional design style.

Green Roofs

A green roof is a roof of a building that is partially or completely covered with vegetation

Green Roofs

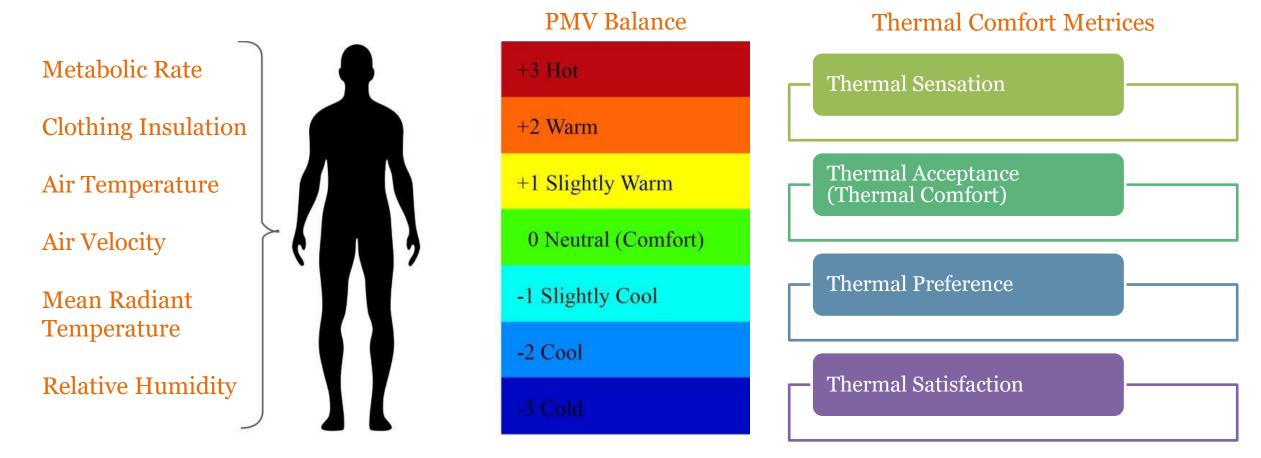
Reduction in Energy use is an important feature of Green Roofing

GREEN ROOFS IN BUILDINGS ALLOWS

During cooler Winter Months	Retain their heat
During hotter Summer Months	Reflecting and absorbing solar radiations

08

Thermal Comfort Metrics

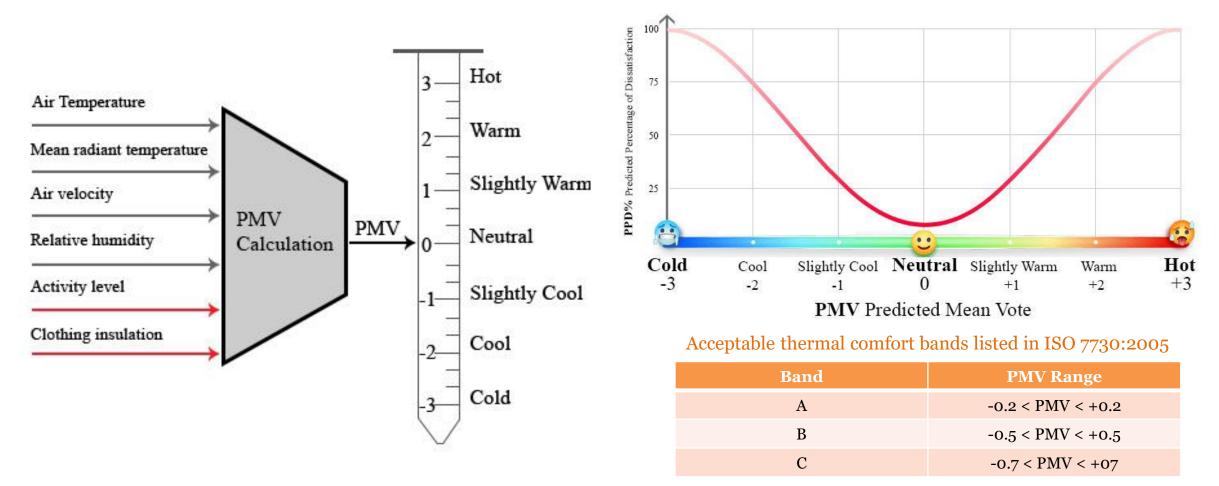


Thermal Comfort Metrices – Preference, Comfort and Acceptability

Storage = Production - Loss

Thermal Comfort Metrices – Preference, Comfort and Acceptability

PMV	Sensation Value	Acceptance Value	Preference Value
-3	Cold	-	-
-2	Cool	Very Unacceptable	Want Cooler
-1	Slightly Cool	Unacceptable	Want Slightly Cooler
0	Neutral	-	No Change
+1	Slightly Warm	Acceptable	Want Slightly Warmer
+2	Warm	Very Acceptable	Want Warmer
+3	Hot	-	-



Thermal Comfort Metrices – PMV

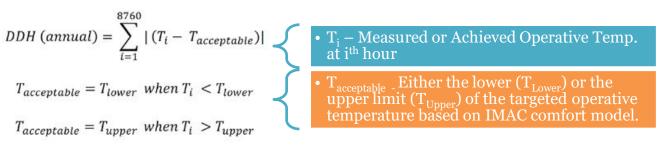
Source: Guenther, S. (2021). What Is Pmv? What Is Ppd? The Basics of Thermal Comfort. Simscale. Simscale. Retrieved from https://www.simscale.com/blog/2019/09/what-is-pmv-ppd/

Thermal Comfort Metrices – PPD

Predicted Percentage of Dissatisfied occupants (PPD) refers to the percentage of occupants likely to experience thermal dissatisfaction out of the total number of occupants. ISO 7730:2005 defines the hard limit as ranging between -2 and +2, for existing buildings between -0.7 and +0.7, and new buildings ranging between -0.5 and +0.5.

PPD ranges corresponding to acceptable PMV ranges as defined in ISO 7730:2005

Band	PMV Range	PPD%	Temperature (°C)
А	-0.2 < PMV < +0.2	< 6	24.5 ± 1
В	-0.5 < PMV < +0.5	< 10	24.5 ± 1.5
С	-0.7 < PMV < +07	< 15	24.5 ± 2.5



Thermal Comfort Metrices – Degree Discomfort Hours

- Calculated based on India Model for Adaptive (thermal) Comfort (IMAC).
- Summation of difference of hourly operative temperature and IMAC band acceptable temperature only for hours when temperature goes outside IMAC temperature band with 80% or 90% acceptability range.

Formula for DDH (Annual)

Basis of Eco Niwas Samhita RETV value

Same as Discomfort Degree Hours

Total discomfort degree hours across the year against the comfort definition*

*National Building Code 2016 (India Model for Adaptive Comfort)

 $Source: vecteezy. (n.d.). \ Hot weather \ thermometer. \ vecteezy. \ Retrieved from \ https://www.vecteezy.com/vector-art/583489-hot-weather-thermometer-icon-vector$

DAY 1

Lunch Break

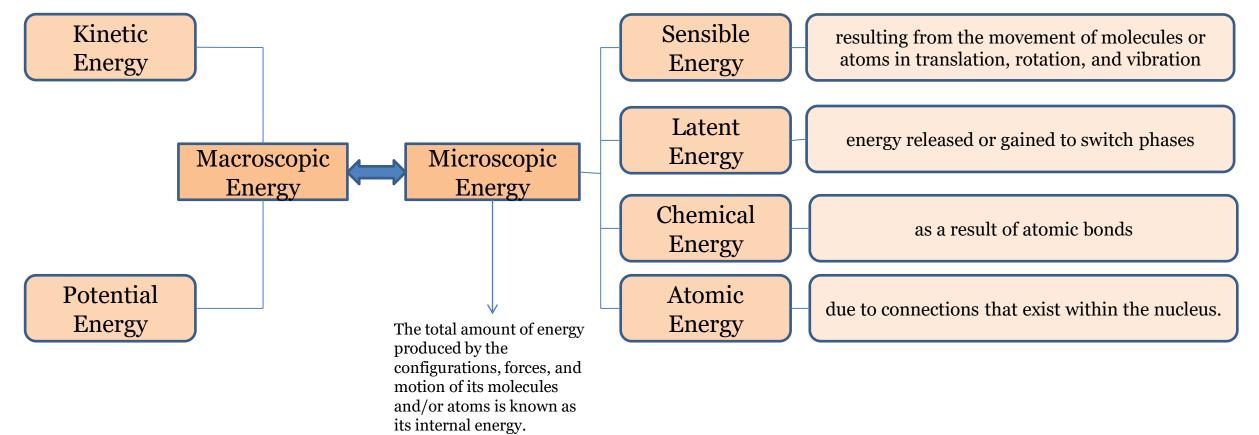
DAY 1

Session 3: Building Physics and Fundamentals of Thermal Comfort

...

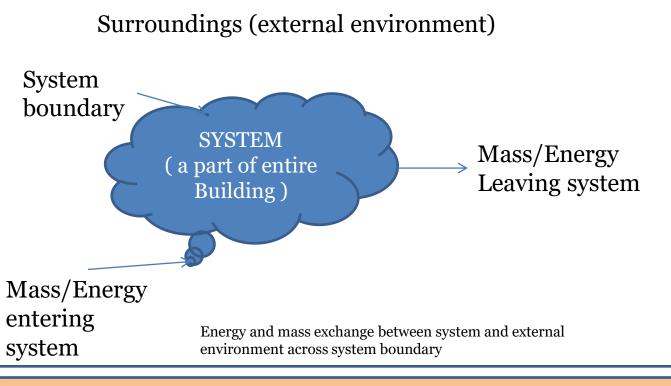
09

Building Physics Affecting Thermal Comfort



Energy & Heat

As chemical and atomic energy are not relevant in the context of buildings, the phrase "internal energy" is limited to perceptible and latent energy.

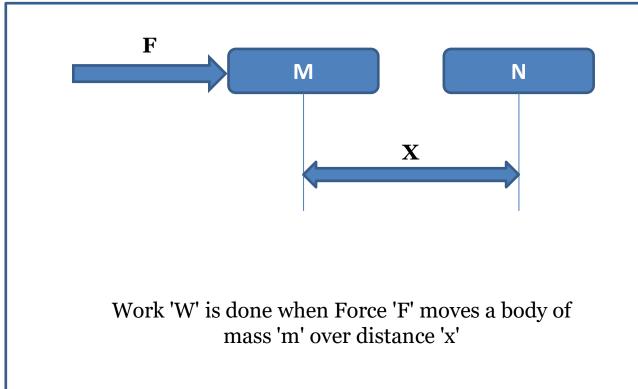


Energy & Heat

The envelope is regarded as the boundary when a building is viewed as a system in order to comprehend its thermal interactions with the surrounding environment.

A system, in terms of thermodynamics, is an area that is being studied, such as a room, floor, or building. A system border establishes the region's size, while elements outside of that boundary make up the external environment. As a result, a thermodynamic system is defined as a space-bound area or a volume of matter enclosed by a closed surface (ASHRAE, 2021). Over this system boundary, mass and/or energy are exchanged.

An open system is one that enables both energy and mass exchange with its surroundings, whereas a closed system only permits the exchange of energy and excludes mass. However, it is important to note that in order to distinguish between the system and its surroundings in both systems, a real or hypothetical, fixed or moveable boundary must be established (ASHRAE, 2021) This line may be rigid or flexible.



Energy & Heat

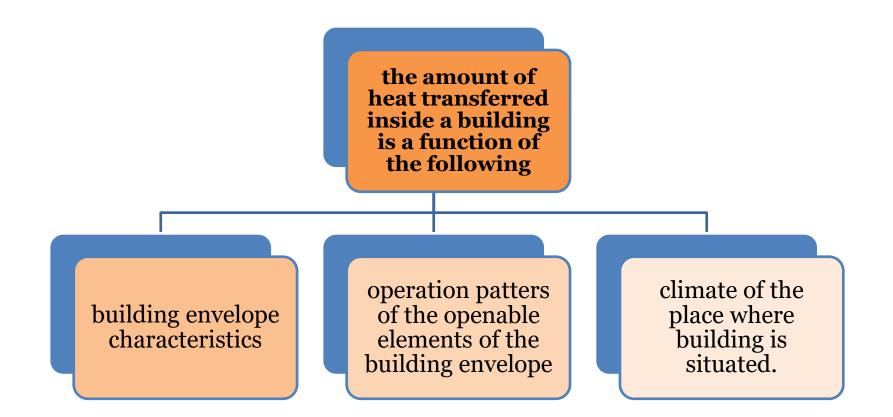
What is Energy ?

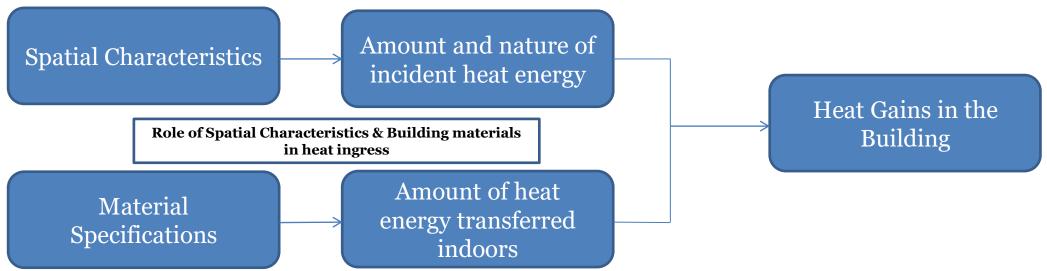
Energy of a system is its potential to do work.

Mechanical work (W) is defined as when a force (F) moves a mass (m) over a distance (x), as shown in Figure. An organism uses its internal energy to change its environment.

Similar to how heat is lost from a system at a higher temperature to a cooler environment, internal energy is also lost.

Thermal energy is caused by the motion of molecules and/ or intermolecular forces (ASHRAE, 2021).

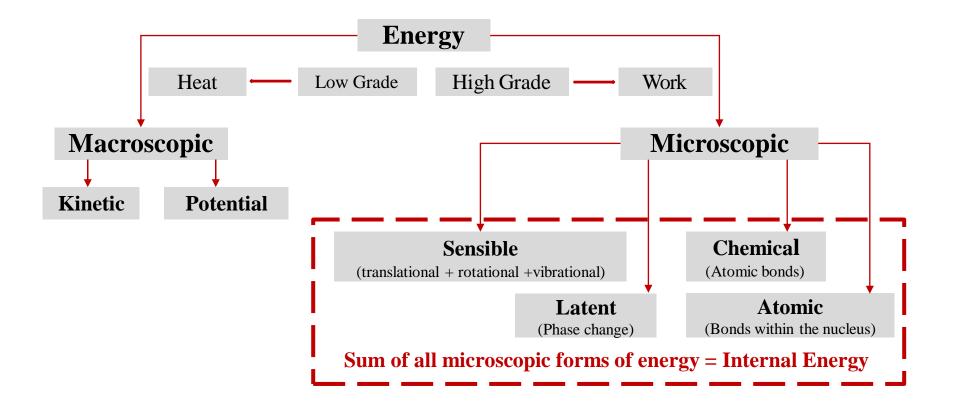




Factors Influencing Heat Transfer

• The amount of thermal energy on the surface of various building elements is visible in thermography images of buildings and people in various built environments.

• Figure demonstrates that the distribution of thermal energy among its users and in any indoor or outdoor environment is not uniform. This implies that heat is constantly being transferred between the surfaces of different items, people inside, and the air inside. Building heat transmission occurs at the building envelope, much as how heat transfer between a human body and the air around it occurs at the skin's surface.



Forms of Energy

1st Law of Thermodynamics

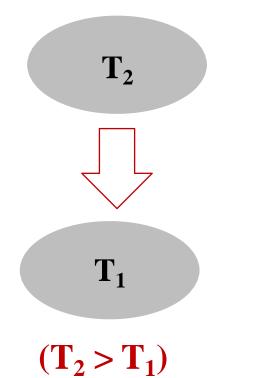
$$\Delta U = Q - W$$

- ΔU change in internal energy
- Q heat added to the system
- W work done by the system

Establishes a relationship between a system's

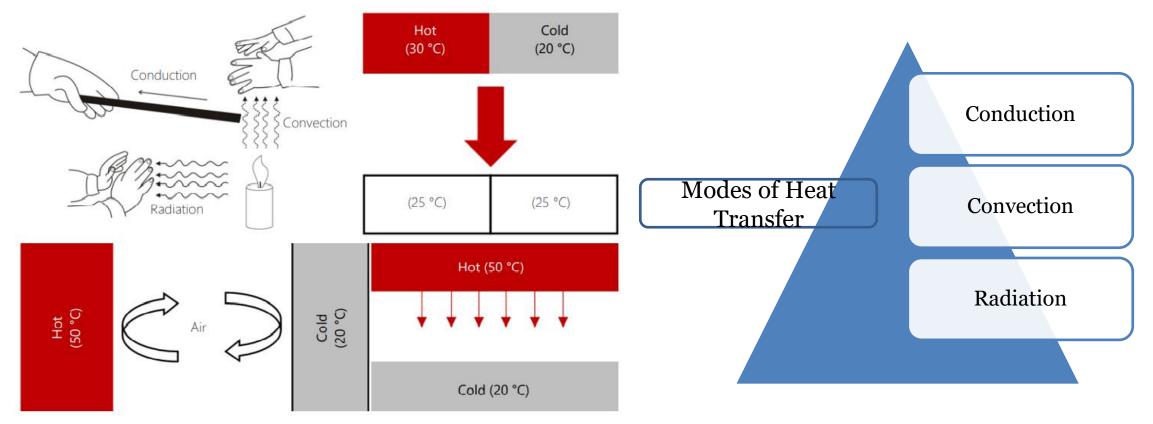
- Internal energy
- The work performed by (or to) the system, and
- The heat removed from (or added to) the system

The internal energy of a system performing work or losing heat decreases, whereas a system's internal energy rises if it gains heat or is subjected to work.



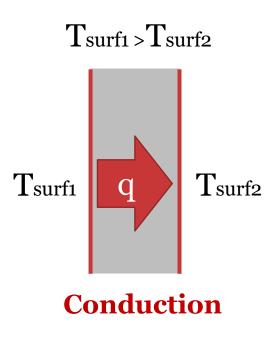
2nd Law of Thermodynamics

- The natural (spontaneous) direction of heat flow between bodies is from hot to cold.
- Heat moves from higher temperature to lower temperature



Building Physics Affecting Thermal Comfort

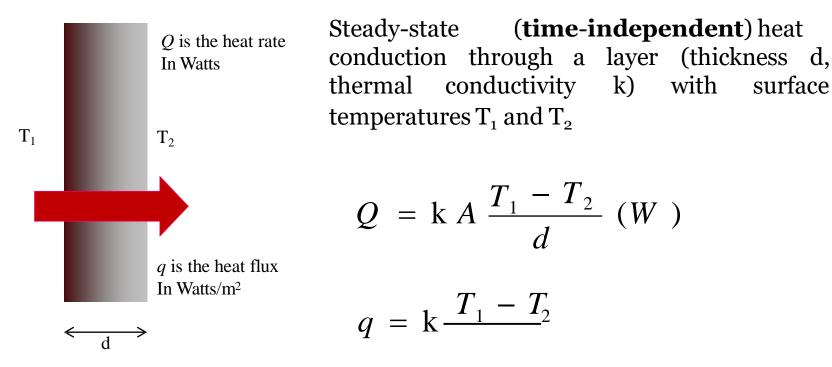
Modes of Heat Transfer

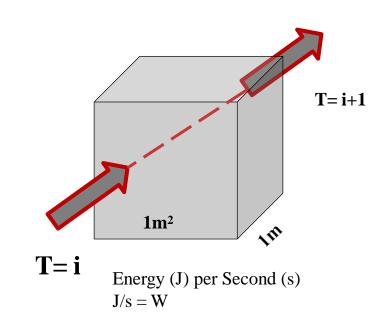


Occurs in a stationary medium Hot objects with higher energy (due to intense random molecular motions) **transfer heat to**

Cool objects with lesser energy (due to lower molecular motions)

Source: Rawal, R. (2021, December 22). Heat Transfer and Your Building Envelope. Solar Decathlon India. Retrieved April 13, 2022, from https://solardecathlonindia.in/events/





q depends on?

- Temperature difference
- Thickness of the layer (d)
- Thermal conductivity (k) which is a property of the material

Thermal conductivity (k)

- property of the material
- function of moisture and temperature
- W·m⁻¹·K⁻¹

Energy & Heat	MATERIALS	DENSITY (kg/m³)	THERMAL CONDUCTIVIT Y (W/m.k)	SPECIFIC HEAT CAPACITY (J/kg.K)			
	Walls						
Thermal conductivity, density and specific heat capacity of common	Autoclaved Aerated Concrete Block (AAC)	642	0.184	0.794			
building materials and surface finishes	Resource Efficient Bricks (REB)	1520	0.631	0.9951			
	Concrete block (25/50)	2427	1.396	0.4751			
	Concrete block (30/60)	2349	1.411	0.7013			
	Calcium Silicate Board	1016	0.281	0.8637			
Source: Thermo-Physical-Optical Property Database of Construction Materials, U.S India Joint Center for Building Energy	Cement Board	1340	0.438	0.8113			
Research and Development (CBERD) and Ministry of New and Renewable Energy (MNRE)	Sandstone	2530	3.009	1.5957			
	Stone (Jaisalmer Yellow)	3006	2.745	2.0954			
	Stone (Kota)	3102	3.023	2.0732			
	Bamboo Climate Smart Buildings	913	0.196	0.6351			

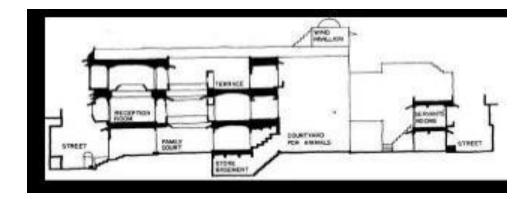
Climate Smart Buildings | LHP Ranchi | PMAY Urban

Energy & Heat

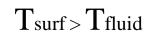
Thermal conductivity, density and specific heat capacity of common building materials and surface finishes

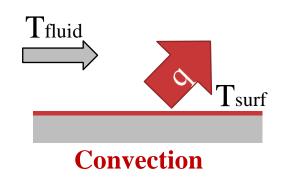
Source: Thermo-Physical-Optical Property Database of Construction Materials, U.S.-India Joint Center for Building Energy Research and Development (CBERD) and Ministry of New and Renewable Energy (MNRE)

MATERIALS	DENSITY (kg/m³)	THERMAL CONDUCTIVITY (W/m.k)	SPECIFIC HEAT CAPACITY (J/kg.K)
	Surface Finis	hes	
Plaster of Paris (POP) powder	1000	0.135	0.9536
Cement Plaster	278	1.208	0.9719
Plywood	697	0.221	0.7258



Conduction through walls

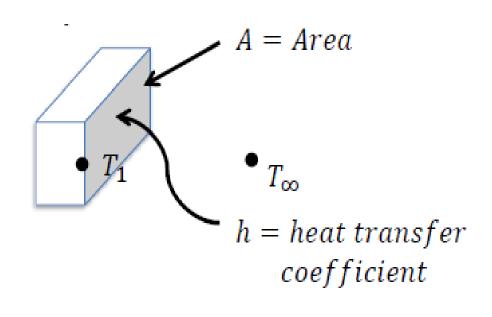




• Convection heat transfer needs a fluid (gas or liquid) medium and involves bulk fluid motion

• The heated fluid moves away from the source of heat, carrying energy with it causing convection currents that transport energy

Source: Rawal, R. (2021, December 22). Heat Transfer and Your Building Envelope. Solar Decathlon India. Retrieved April 13, 2022, from https://solardecathlonindia.in/events/



Convective heat transfer (Q) between a fluid and a surface is Q a temperature difference Q a area of the surface in contact

$Q = \mathbf{h} A \Delta \mathbf{T}$

Q = heat transfer by convection, W
A = surface area, m2
ΔT = T∞ - T1 at some specified location, K
h = heat transfer coefficient, W·m-2·K-1

Surface resistance (ISO 6946)					
Heat flow direction	R _{si} [m²∙K∙W⁻¹]	R _{so} [m²·K·W ⁻ 1]			
Horizontal (±30º)	0.13	0.04			
Up	0.10	0.04			
Down	0.17	0.04			

Surface conductance

Conductance of the thin film of air at the surface of the material/body

- h = surface/film conductance
- W·m⁻²·K⁻¹
- Surface/film resistance $R_s = 1/h$

Heat transfer coefficient

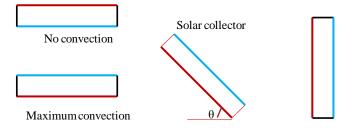
Surface conductance = Surface film conductance = Equivalent conductance = Heat transfer coefficient = h

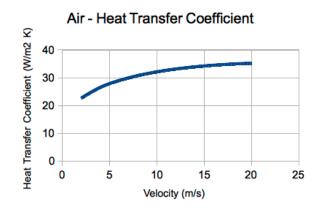
 $h = h_c + h_r$

- h_c = convective heat transfer coefficient
- h_r = radiative heat transfer coefficient

Natural Convection – Forced Convection

Source: Capp<u>uccino. (n.d.). freepik. Retrieved from https://www.freepik.com/photos/cappuccino , Indiamart. (n.d.). Usha Table Fan. Indiamart. Retrieved from https://www.indiamart.com/proddetail/usha-table-fan- 19384320588.html</u>





Convective heat transfer is a function of angle (θ)

- Surface film resistance or conductance considers both radiative and convective heat transfer
- Varies with
 - Orientation of the surface
 - Surface emittance
 - Direction of heat flow
 - Air velocity
 - Surface and air temperature, and the temperature difference

Airflow through a room

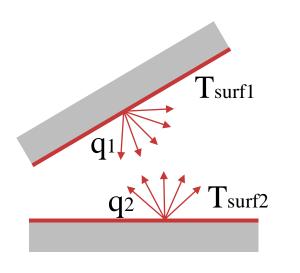
Wall temperatures of the room at 30 °C Heat transfer coefficient on inside =10 W/m2K

Wind-induced airflow

Stack effect

Buoyancy driven wind flow

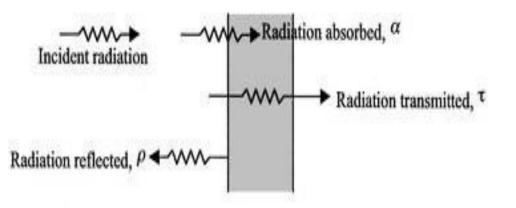
Source: Tripadvisor. (n.d.). Padmanabhapuram Palace. Tripadvisor. Retrieved from https://www.tripadvisor.in/Attraction_Review-g608476-d3705659-Reviews-Padmanabhapuram_Palace_Kanyakumari_Kanyakumari_District_Tamil_Nadu.html



Radiation

- Radiation heat transfer is a process where heatwaves are emitted that may be absorbed, reflected, or transmitted through a colder body.
- Energy has an electric field and a magnetic field associated with it,
- Wave-like properties. "electromagnetic waves"
- Wide range of electromagnetic radiation in nature. Visible light is one example.
- Others include forms like ultraviolet radiation, x-rays, and gamma rays.

Source: Rawal, R. (2021, December 22). Heat Transfer and Your Building Envelope. Solar Decathlon India. Retrieved April 13, 2022, from https://solardecathlonindia.in/events/



The behaviour of a surface with radiation incident upon it can be described by the following quantities:

= absorptance – a fraction of incident radiation absorbed
= reflectance - fraction of incident radiation reflected
= transmittance – a fraction of incident radiation transmitted.

$\alpha + \rho + \tau = 1$

Outdoor Climate & Heat Transfers - Climate Zones of India

	Con	duction	Convection		Radi	Radiation	
	Spatial	Material & Methods	Spatial	Material & Methods	Spatial	Material & Methods	
Walls							V. Low
Fenestration s (Windows)							Low Neutral
Roofs							High
							V. High

Source: Rawal, R. (2021, December 22). Heat Transfer and Your Building Envelope. Solar Decathlon India. Retrieved April 13, 2022, from https://solardecathlonindia.in/events/

WH: Warm Humid

Heat Transfer in Buildings – Design Strategy

	Conduction	Convection	Radiation	HD: Hot-Dry TE: Temperate CM:
Geometry - Massing	HD	WH	All Climates	Composite CO: Cold
Orientation		WH	All Climates	
External Surface to Building Volume Ratio	HD	WH	HD	V. Low
Extent of Fenestration and Thermal Characteristics	HD	WH	All Climates	Low Neutral
Internal Volume – Stack Ventilation	X	HD	Х	High
Location of Fenestration – Pressure Driven Ventilation	X	WH	Х	V. High

Source: Rawal, R. (2021, December 22). Heat Transfer and Your Building Envelope. Solar Decathlon India. Retrieved April 13, 2022, from https://solardecathlonindia.in/events/

Heat Transfer in Buildings – Design Strategy

Thermal Conductivity R Value – U Value Thermal Mass Specific Heat Thermal Diffusivity	 Walls Internal External
Thermal Conductivity – Frames and Glass R Value – U Value Solar Gains Solar Heat Gain Coefficient Visual Light Transmittance VLT	 Fenestrations Windows Skylights Doors
Thermal Conductivity R Value – U Value Thermal Emissivity Solar Reflectance	 Roofs Floors Foundations

Source: Rawal, R. (2021, December 22). Heat Transfer and Your Building Envelope. Solar Decathlon India. Retrieved April 13, 2022, from https://solardecathlonindia.in/events/

10

Heat Balance & Adaptive Thermal Comfort Method

Comfort Theory - Heat Balance Method

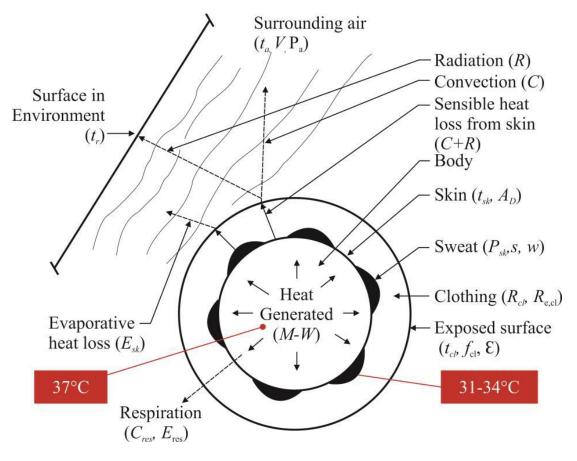
The heat balance method presents a physics based mathematical model that establishes thermal comfort when heat loss from the body is exactly equal to heat produced within the body. The heat balance method gives following equation:

M-W= qsk+qres+S=(C+R+ Esk)+(Cres+ Eres)+(Ssk+ Scr)

Where,

$$\begin{split} & M = \text{Rate of metabolic heat production, W/m 2} \\ & W = \text{Rate of mechanical work accomplished, W/m 2} \\ & q_{sk} = \text{Total rate of heat loss from skin, W/m 2} \\ & q_{res} = \text{Total rate of heat loss through respiration, W/m 2} \\ & C+ R = \text{Sensible heat loss from skin, W/m 2} \\ & E_{sk} = \text{Total rate of evaporative heat loss from skin, W/m 2} \\ & C_{res} = \text{Rate of convective heat loss from respiration, W/m 2} \\ & E_{res} = \text{Rate of evaporative heat loss from respiration, W/m 2} \\ & S_{sk} = \text{Rate of heat storage in skin compartment, W/m 2} \\ & S_{cr} = \text{Rate of heat storage in core compartment, W/m 2} \end{split}$$

Source: Fantozzi, F., & amp; Lamberti, G. (2019). Determination of thermal comfort in indoor sport facilities located in Moderate Environments: An overview. Atmosphere, 10(12), 769. https://doi.org/10.3390/atmos10120769 Climate Smart Buildings | LHP Ranchi | PMAY Urban



Comfort Theory - Heat Balance Method

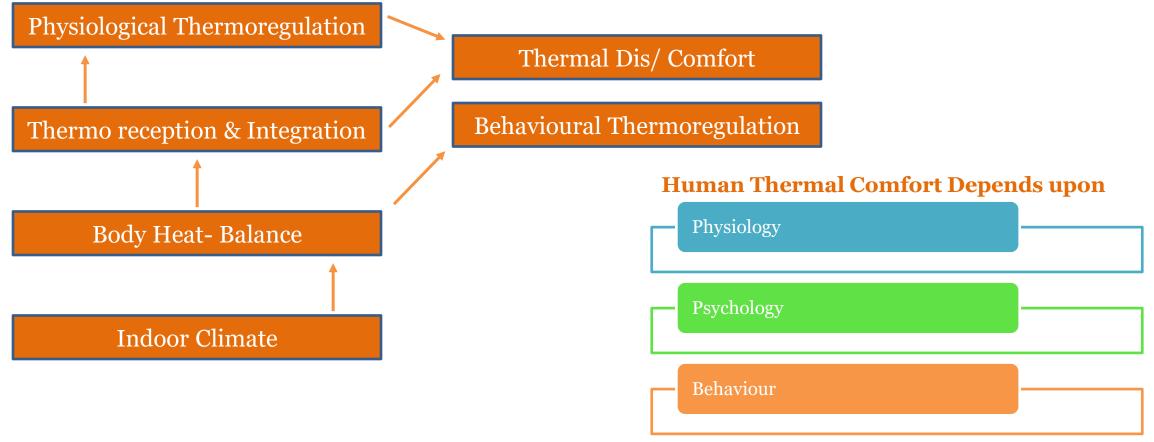
In order to be comfortable: -

Heat production = Heat loss from the body

Heat loss > Production, then you feel Cold

Heat loss < Production, then you feel Hot

Source: Fantozzi, F., & amp; Lamberti, G. (2019). Determination of thermal comfort in indoor sport facilities located in Moderate Environments: An overview. Atmosphere, 10(12), 769. https://doi.org/10.3390/atmos10120769 Climate Smart Buildings | LHP Ranchi | PMAY Urban



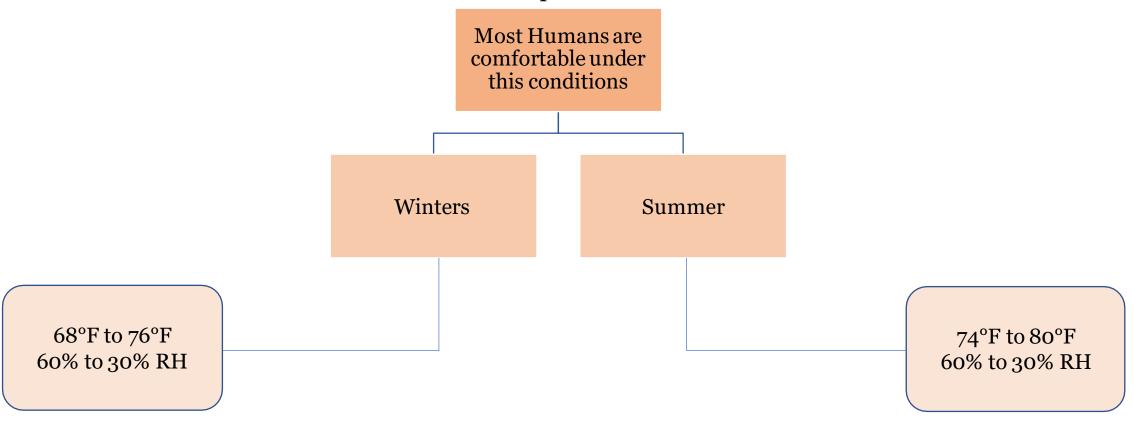
Comfort Theory – Adaptive Thermal Comfort Method

Source: Fantozzi, F., & amp; Lamberti, G. (2019). Determination of thermal comfort in indoor sport facilities located in Moderate Environments: An overview. Atmosphere, 10(12), 769. https://doi.org/10.3390/atmos10120769

Climate Smart Buildings | LHP Ranchi | PMAY Urban

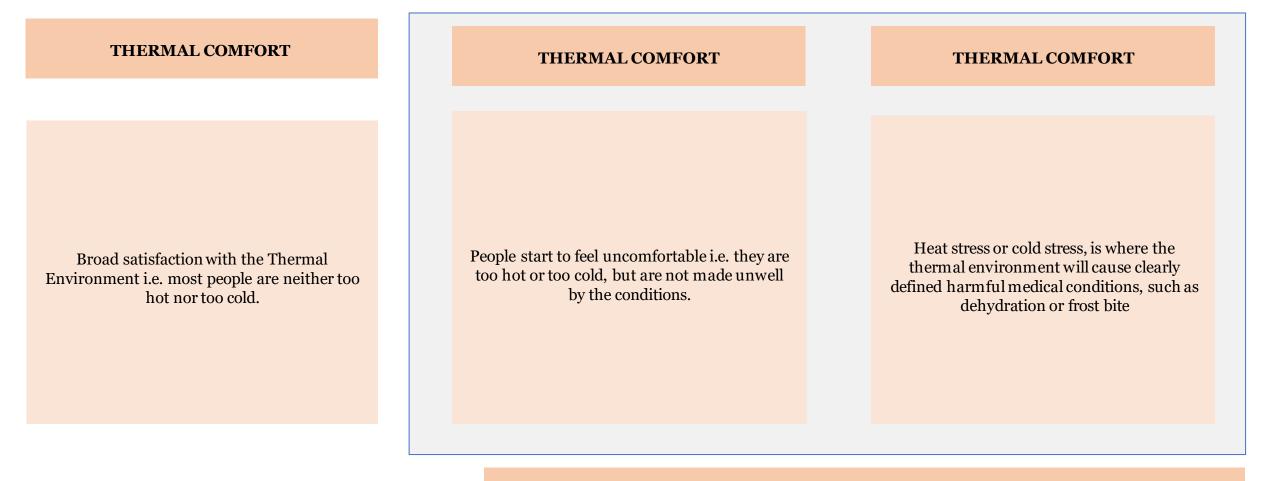
Local Thermal Discomfort

Climate Smart Buildings | LHP Ranchi | PMAY Urban



Human Comfort Range as per ASHRAE 55 Standard

To accommodate Local thermal Discomfort, most standards like ASHRAE specify conditions to ensure 80% acceptability of the thermal environment amongst occupants.



THERMAL ENVIRONMENTS CAN BE DIVIDED LOOSELY INTO THREE BROAD CATEGORIES:

THERMAL DISCOMFORT

Local Thermal Discomfort can be induced

by a generalized warm or cool discomfort of the body

by an unpleasant chilling or heating of a specific region of the body.

To accommodate Local thermal Discomfort, most standards like ASHRAE specify conditions to ensure 80% acceptability of the thermal environment amongst occupants.

Local Thermal Discomfort - Causes

Local Thermal Discomfort is primarily caused by the Asymetric Thermal Radiation. Where :

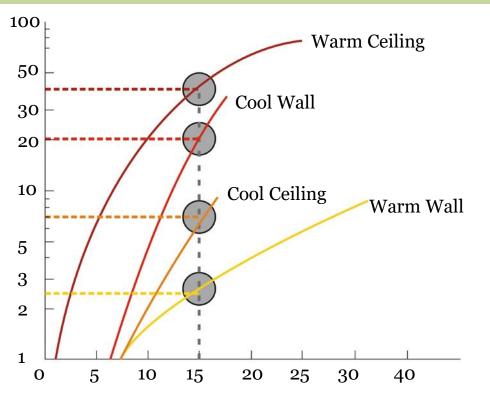
Radiant asymmetry is defined as the difference in radiant temperature of the environment on opposite sides of the person/ Difference in radiant temperatures seen by a small flat element looking in opposite directions (ASHRAE, 2021)

Radiant Asymmetry Types in Buildings

Radiant Temperature Asymmetry – Walls and Roof

Radiant Temperature Asymmetry – Floors

Radiant Temperature Asymmetry Between head and ankles



Local Thermal Discomfort due to Radiant Temperature Asymmetry – Walls and Roof

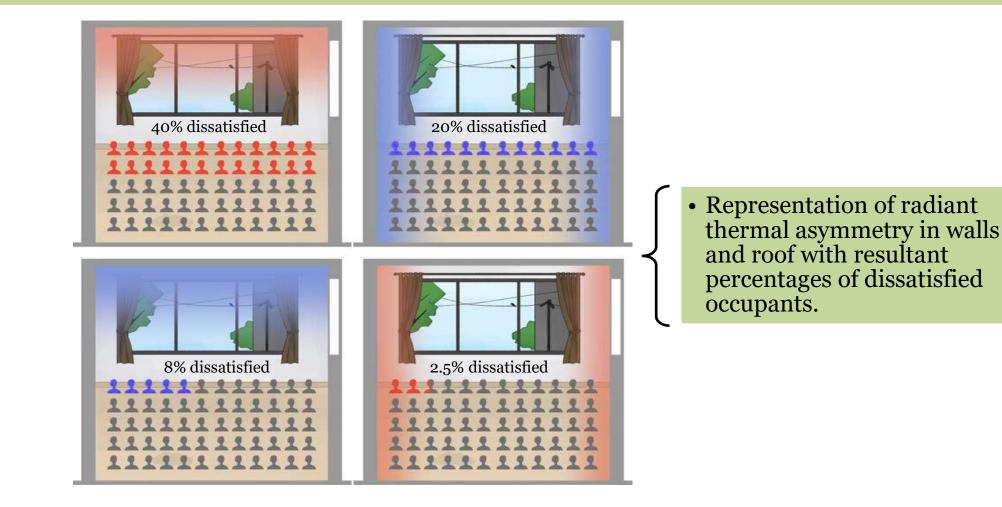
Occupant dissatisfaction levels due to radiant temperature asymmetry in walls and roof. Source: Abushakra Bass, Akers Larry, Baxter Van, Hayte Sheila & Paranjpey Ramesh (2017). ASHRAE Fundamentals SI edition.

Percentage of dissatisfied occupants with radiant thermal asymmetry of 15°C

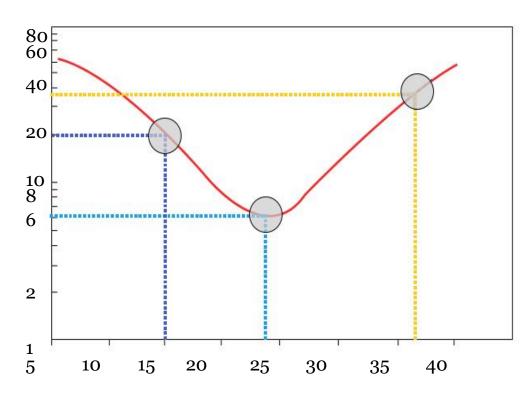
Radiant Thermal Asymmetry (15 C) Cause	Warm Ceiling	Cool Walls	Cool Ceiling	Warm Walls
PPD	40%	20%	8%	2.5%

The descending order of PPD expressed in radiant thermal asymmetry for walls and ceilings can be given as

Warm Ceiling > Cool Wall > Cool Ceiling > Warm Wall.



Local Thermal Discomfort due to Radiant Temperature Asymmetry – Walls and Roof



Local Thermal Discomfort due to Radiant Temperature Asymmetry – Floors

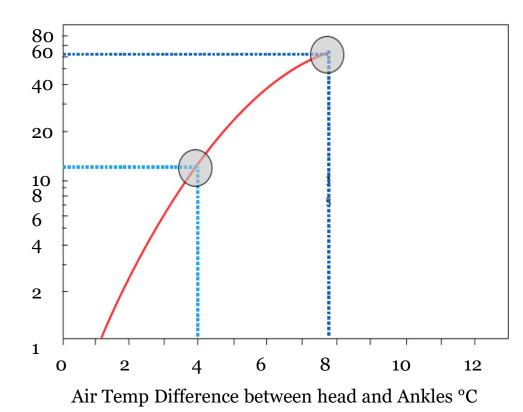
Occupant dissatisfaction levels due to radiant temperature asymmetry in floor. Source: Abushakra Bass, Akers Larry, Baxter Van, Hayte Sheila & Paranjpey Ramesh (2017). ASHRAE Fundamentals SI edition..

Percentage of dissatisfied occupants with radiant thermal asymmetry of 15°C

Categorization of Floor Temp.	Cold	Cool/ Neutral	Warm
Floor Temperature	15 °C	24 °C	36 °C
PPD	20%	6%	35%

The descending order of PPD expressed due to floor temperature is Warm Floor > Cold Floor> Cool Floor. An explanation of why cooler or neutral floor temperatures are preferred over warm floors lies in the understanding of

- □ the amount of hot and cold receptors present at the base of our feet
- □ The sensitivity level of these receptors towards heat or coolth.



Local Thermal Discomfort due to Radiant Temperature Asymmetry – Head and Ankles

Percentage of Seated People Dissatisfied as Function of Air Temperature Difference Between Head and Ankles Source: Abushakra Bass, Akers Larry, Baxter Van, Hayte Sheila & Paranjpey Ramesh (2017). ASHRAE Fundamentals SI edition.

Percentage of dissatisfied occupants with radiant thermal asymmetry of 15°C

Categorization of Floor Temp.	Cold	Cool/ Neutral	Warm
Floor Temperature	15 °C	24 °C	36 °C
PPD	20%	6%	35%

The descending order of PPD expressed due to floor temperature is Warm Floor > Cold Floor> Cool Floor. An explanation of why cooler or neutral floor temperatures are preferred over warm floors lies in the understanding of

- □ the amount of hot and cold receptors present at the base of our feet
- □ The sensitivity level of these receptors towards heat or coolth.

DAY 1

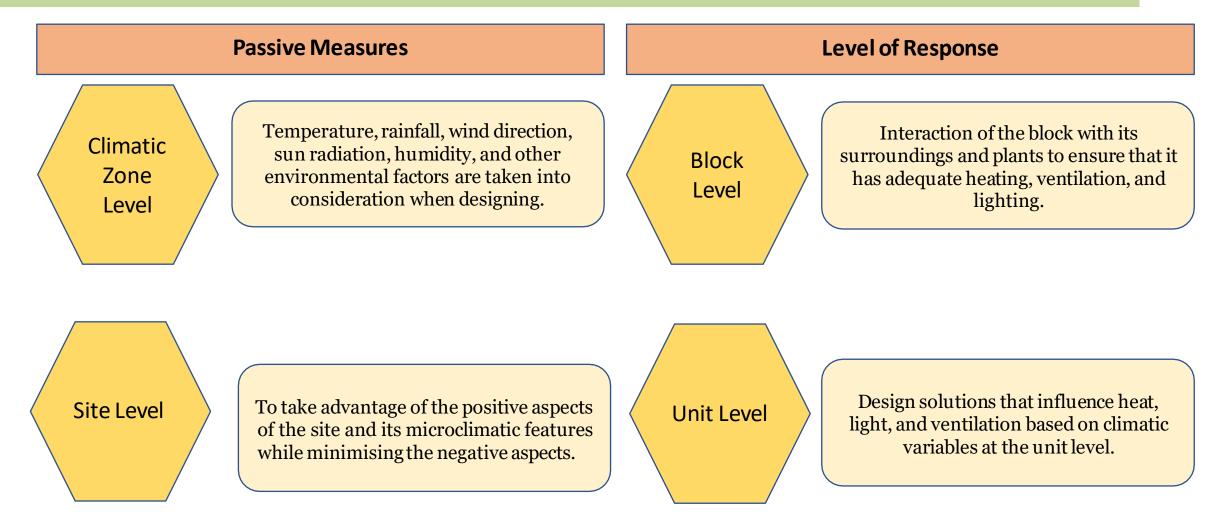
Session 4: Passive Strategies & Building Materials

Climate Smart Buildings | LHP Ranchi | PMAY Urban

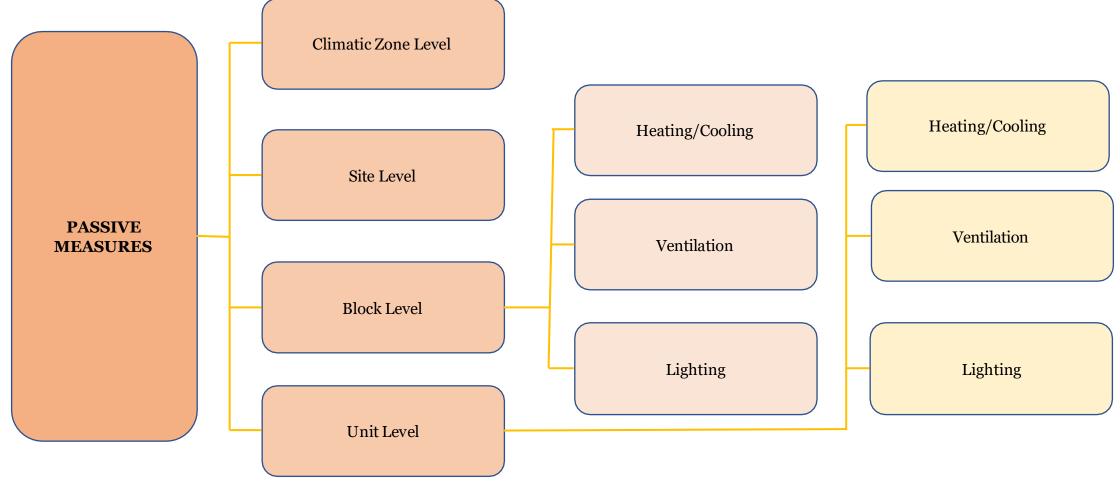
...

Affordable Housing & Passive Design Strategies

Climate Smart Buildings | LHP Ranchi | PMAY Urban



Passive Strategies & Building Physics



Passive Strategies & Building Physics

Climate Smart Buildings | LHP Ranchi | PMAY Urban

Passive Strategies & Building Physics

Passive Measures – Climatic Zone Level

Vernacular / traditional architectural typologies that respond to the region's distinct environment are best exemplified.

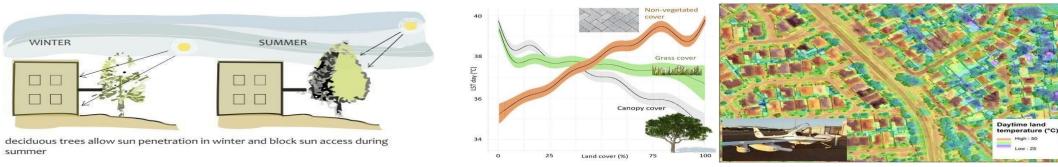
Example

- In Ladakh, earth architecture with thick walls and limited windows provides optimal insulation.
- In Rajasthan, courtyard havelis take advantage of pressure differences and reciprocal shading to provide natural cooling and ventilation.
- In Kerala, sloping roofs are used to guard against severe rains.



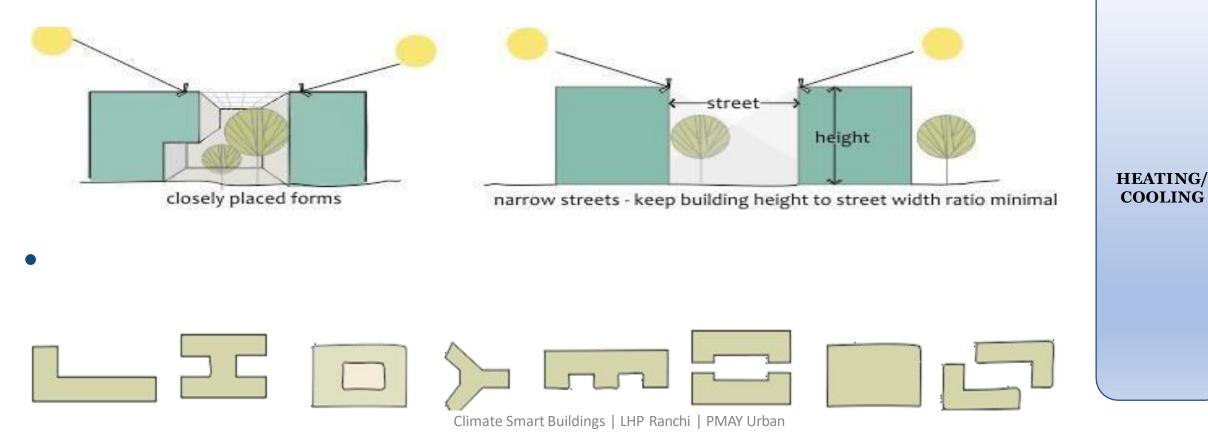
Passive Measures – Site Level

- Reducing the 'heat island' effect with approaches like:
- Courtyards / open courts are often surrounded by construction.
- Taking advantage of block mutual shading
- Using site massing to create wind passageways
- lowering the amount of hard paving to allow for water absorption
- Using complementary vegetation to manage the amount of sunlight that gets through as the seasons change



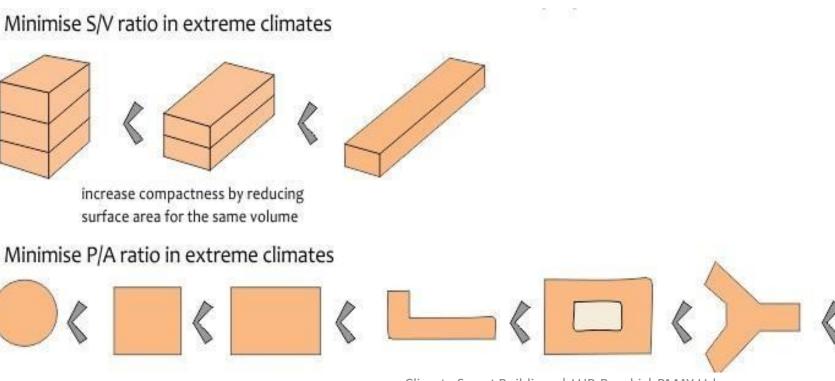
Passive Measures – Leveraging Plantation

Planting trees in the right places to provide shade and ventilation can significantly reduce the severity of intense weather. During heatwaves in Adelaide, a research found that districts with more vegetation cover remained cooler by up to 6°C.



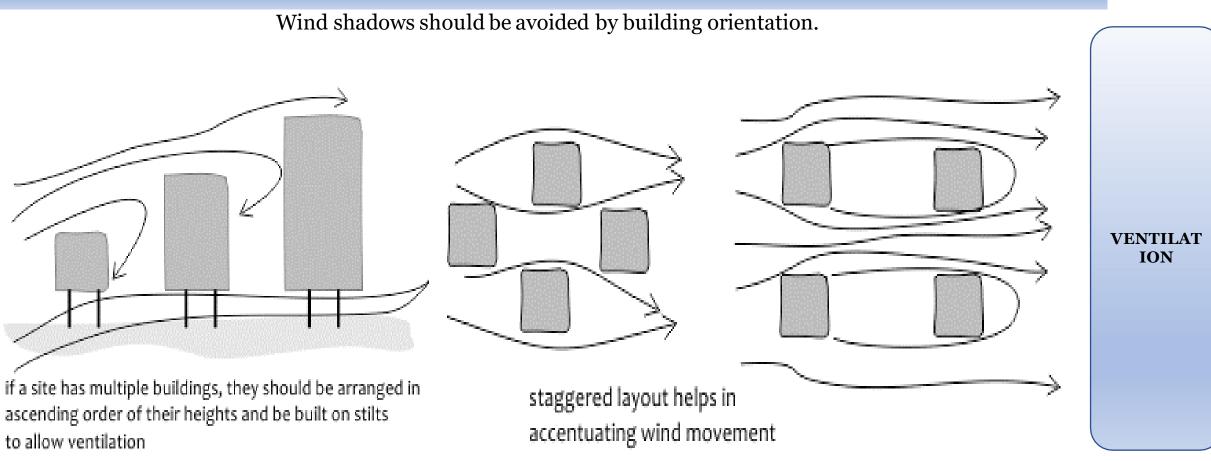
Block Level

Arrange the blocks so that mutual shade is obtained, avoiding solar heat buildup throughout the summer.

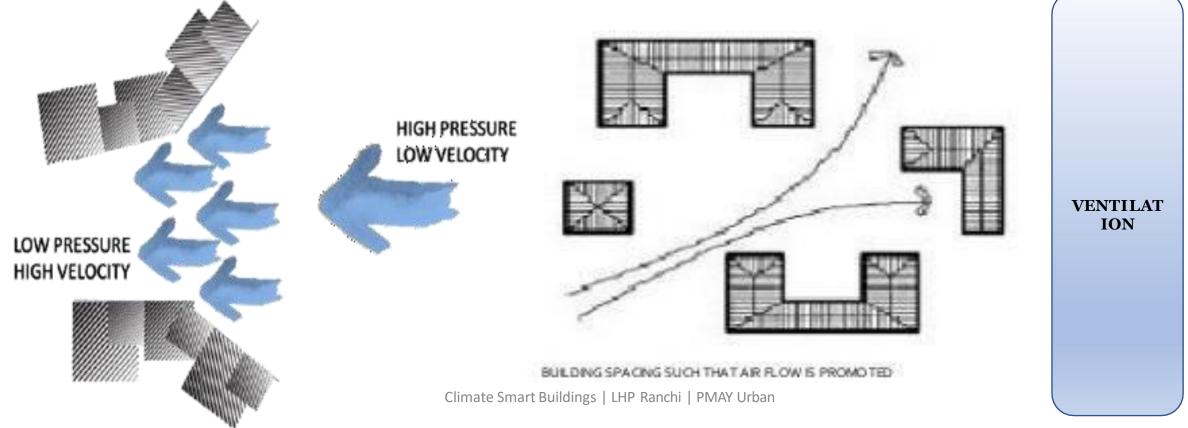


Block Level

In harsh climate zones, reduce the surface area to building volume and perimeter to area ratios to reduce solar radiation exposure.

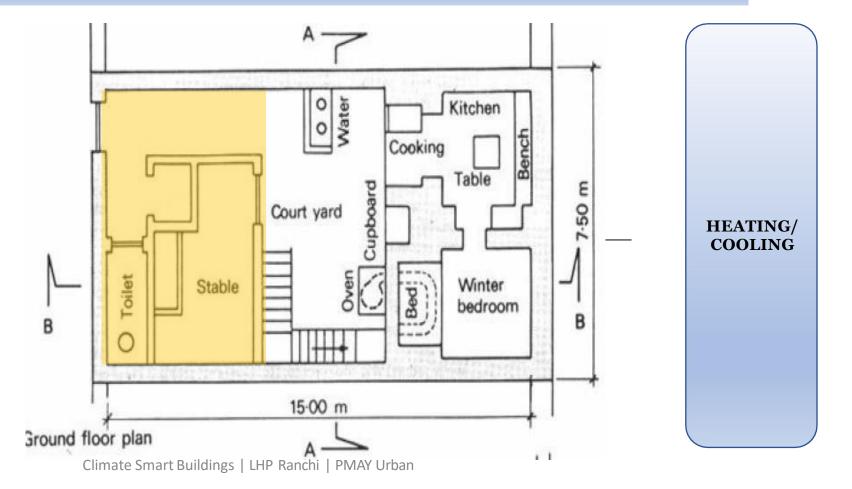


Block Level



Block Level

Wind flows can be harnessed by constructing courts and catchment zones of various sizes. This can help to improve airflow and provide a cooling effect for the blocks.


Unit Level

FORMS AND ORIENTATION:

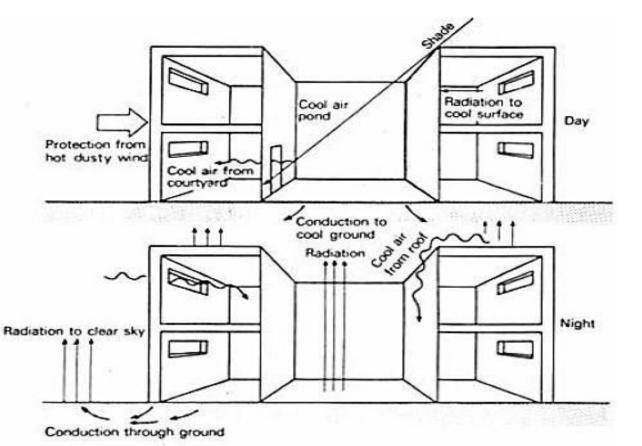
Sun radiation penetration patterns and, as a result, heat uptake and loss in a building are affected by changes in solar route during different seasons.

Internal layout is of the courtyard type, which is rather compact. Reduced sun exposure on East-West external walls to reduce heat gain.

If planned and situated on the east and, especially, the west end of the structure, non-habitable rooms (stores, bathrooms, etc.) can be efficient thermal barriers.

HEATING/

COOLING

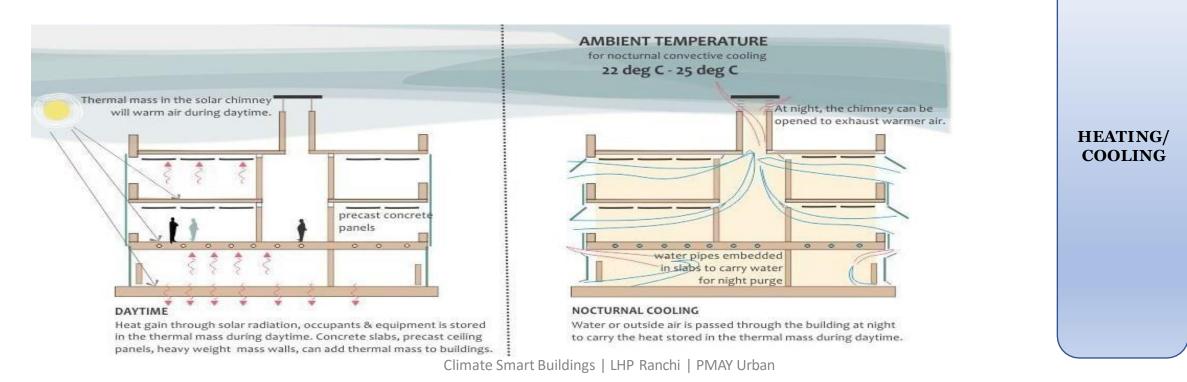

Passive Strategies & Building Physics

Unit Level

FORMS AND ORIENTATION:

High walls block the sun, resulting in significant portions of the inner surfaces and courtyard floor being shaded during the day.

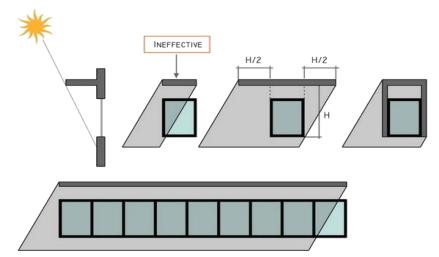
The dirt beneath the courtyard will extract heat from the surrounding places and remit it to the open sky during the night, resulting in cooler air and surfaces.

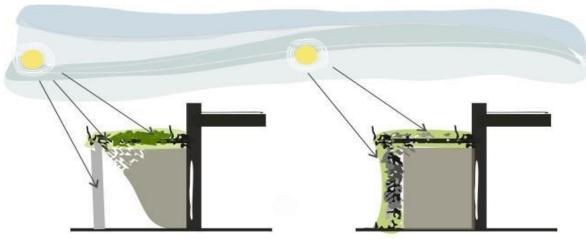


Unit Level

THERMAL MASS:

Thermal mass can be combined with night-time convective cooling, sometimes known as "night cooling," to passively cool buildings. Thermal mass as a passive cooling and heating approach requires a large diurnal swing.




Unit Level

SHADING:

Shade-producing plants, such as creepers, can be used.

Fenestrations and shades/chajjas can be built to maximise solar radiation depending on the environment.

HEATING/ COOLING

VENTILATION

Passive Strategies & Building Physics

Unit Level

ORIENTATION:

Buildings can be orientated in relation to the prevailing wind direction at angles ranging from 0° to 30°.

In buildings with a courtyard, positioning the courtyard 45 degrees from the prevailing wind maximises wind flow into the courtyard and improves cross ventilation in the building (in climates where cooling is required).

CREATING PRESSURE DIFFERENCES:

A 'squeeze point' occurs when wind enters through a smaller opening and escapes through a larger opening. This generates a natural vacuum, which speeds up the wind.

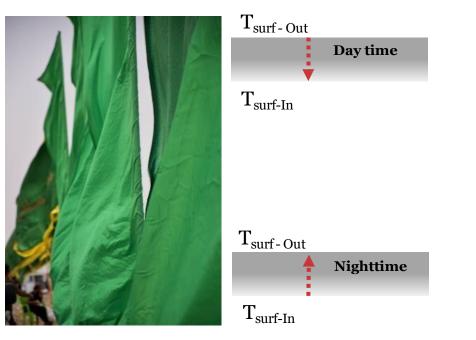
The total area of apertures should be at least 30% of the total floor space.

The window-to-wall-ratio (WWR) should not exceed 60%.

...

13

Innovative Building Materials

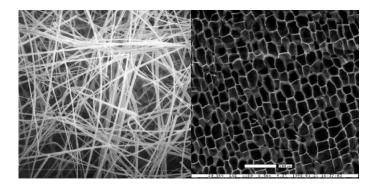


Heat Transfer in Buildings: Insulation and Thermal Mass

Thermal Insulation, Thermal Conductivity

Thermal Insulation, Specific Heat Capacity

<u>Source: unsplash. (n.d.). Cloth. unsplash. Retrieved from https://images.unsplash.com/photo-1564814183940-fb79790e1e45?ixlib=rb-</u> 1.2.1&q=80&fm=jpg&crop=entropy&cs=tinysrgb&dl=mhrezaa-O5R-dr8E2qk-unsplash.jpg



Walling Materials and Methods: Insulation and Thermal Mass

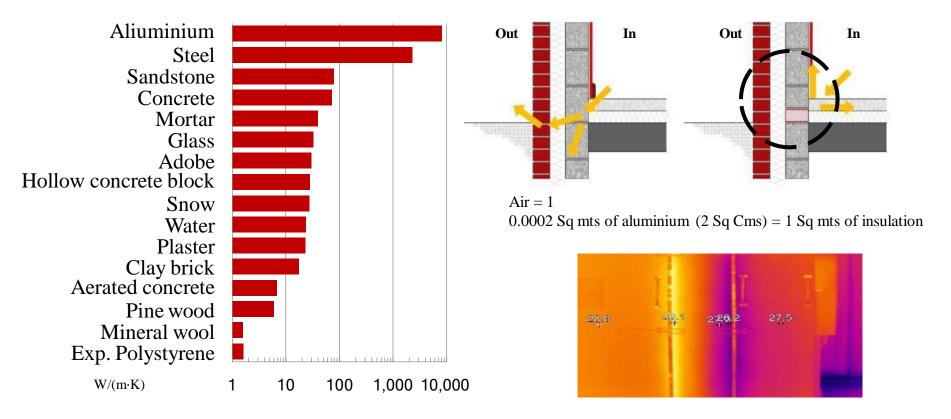
The main thermal insulating material in buildings is locked air

Air is a poor thermal conductor

Air is locked in foam bubbles or between fibers

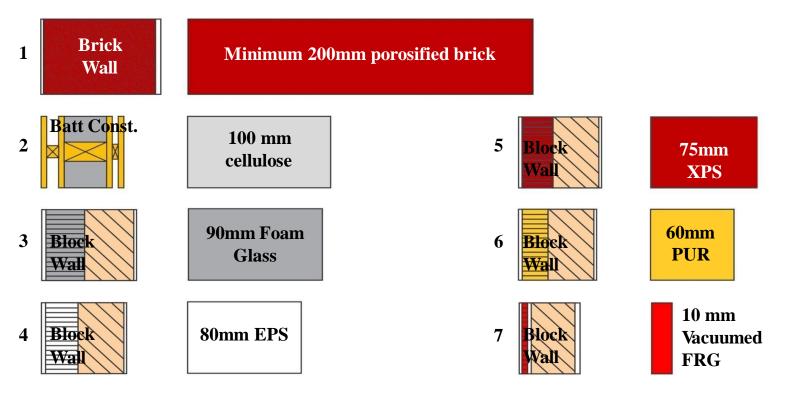
Bubble walls and fibers are themselves opaque to thermal radiation.

Information and Image Courtesy: Prof. Cloude Roulet, EMPA, Switzerland, Indo Swiss BEEP project, BEE, India



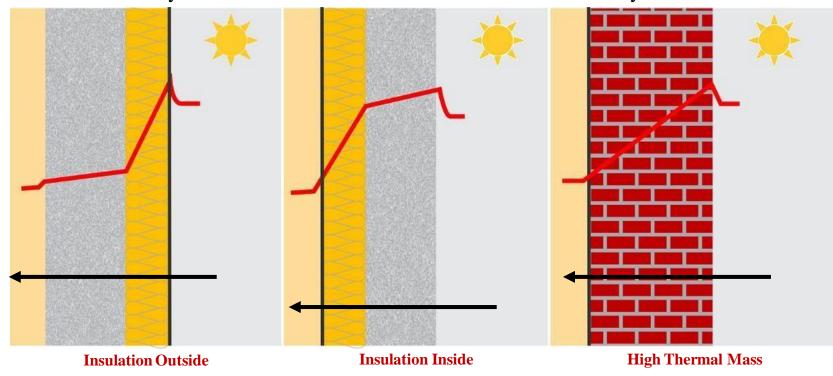
Walling Materials and Methods : Conductivity & Thermal Bridge

Information and Image Courtesy: Prof. Cloude Roulet, EMPA, Switzerland, Indo Swiss BEEP project, BEE, India



Walling Materials and Methods : Construction

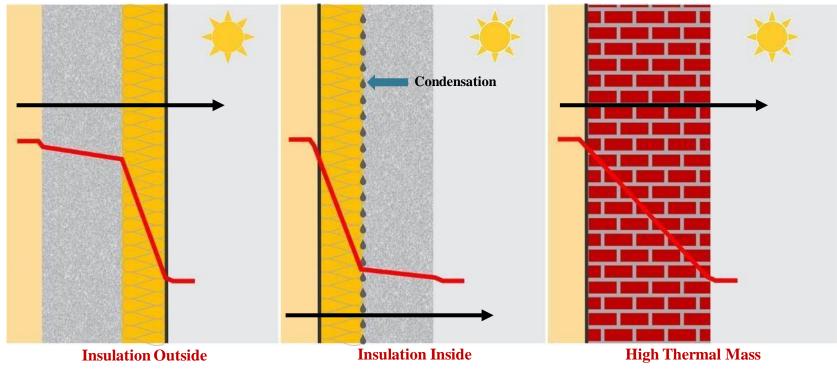
Minimum Thickness Needed to Achieve U value of < 0.40W/m²K



Walling Materials and Methods : Construction

Steady State Indoors and Variable Outdoors – Hot and Sunny Outdoors

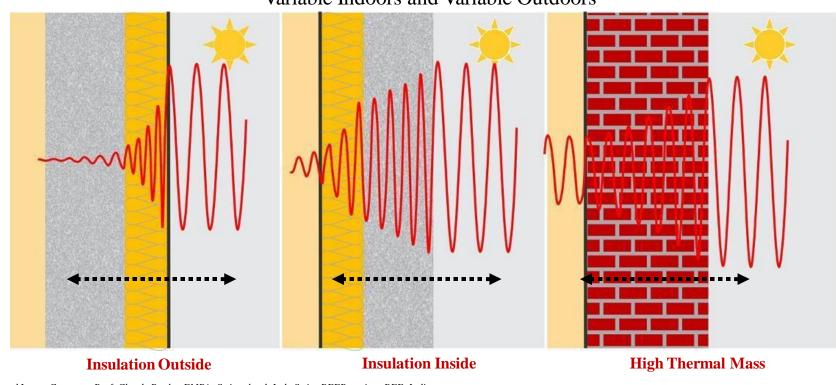
Information and Image Courtesy: Prof. Cloude Roulet, EMPA, Switzerland, Indo Swiss BEEP project, BEE, India



Walling Materials and Methods : Construction

Steady State Indoors and Variable Outdoors – Cold and Sunny Outdoors

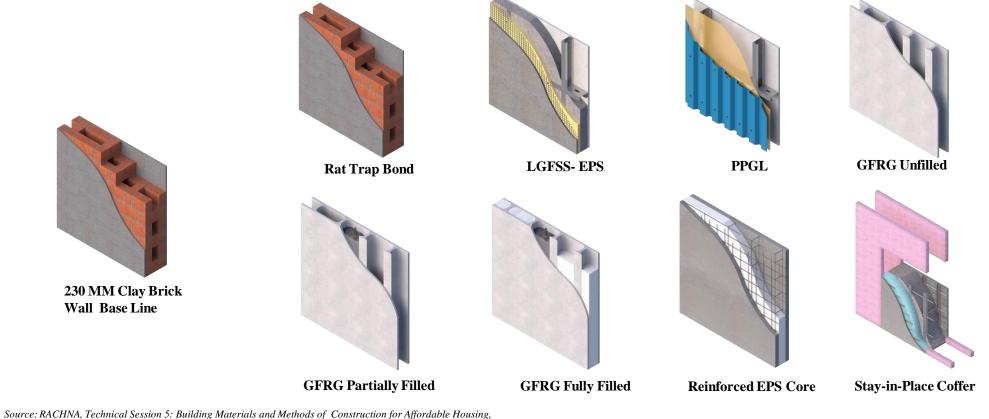
Information and Image Courtesy: Prof. Cloude Roulet, EMPA, Switzerland, Indo Swiss BEEP project, BEE, India



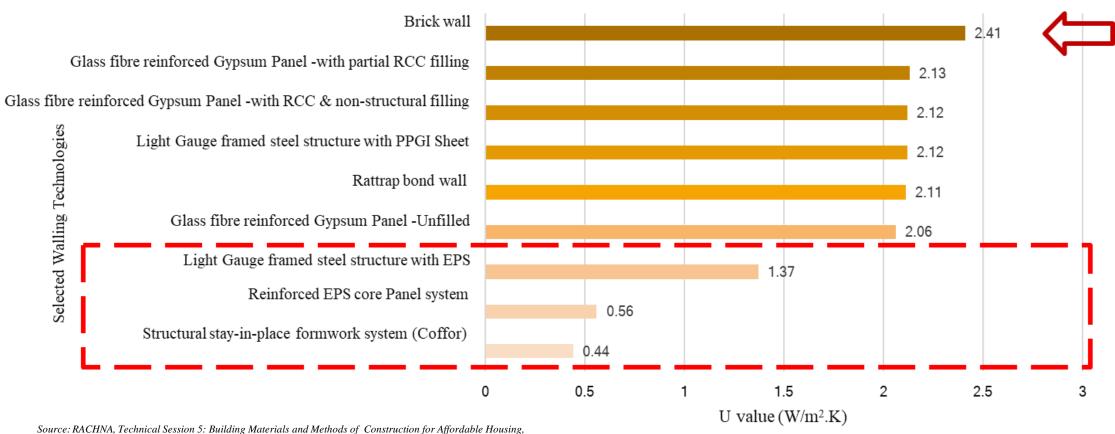
Walling Materials and Methods : Construction

Variable Indoors and Variable Outdoors

Information and Image Courtesy: Prof. Cloude Roulet, EMPA, Switzerland, Indo Swiss BEEP project, BEE, India

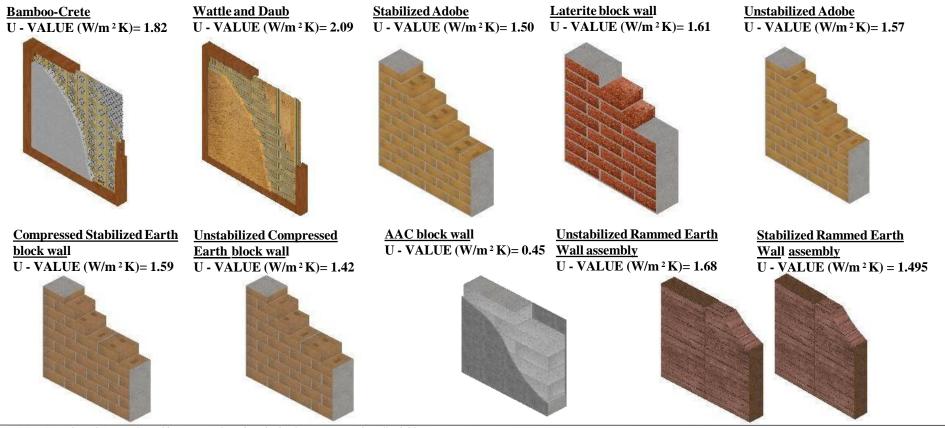


Nonhomogeneous Walling Technologies, Industrial



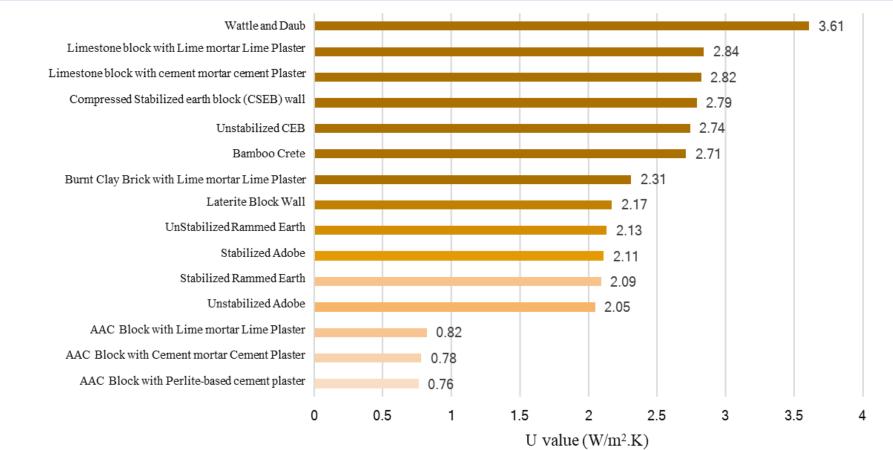
Walling Technologies: U Values, Industrial

CEPT



Nonhomogeneous Walling Technologies, Traditional

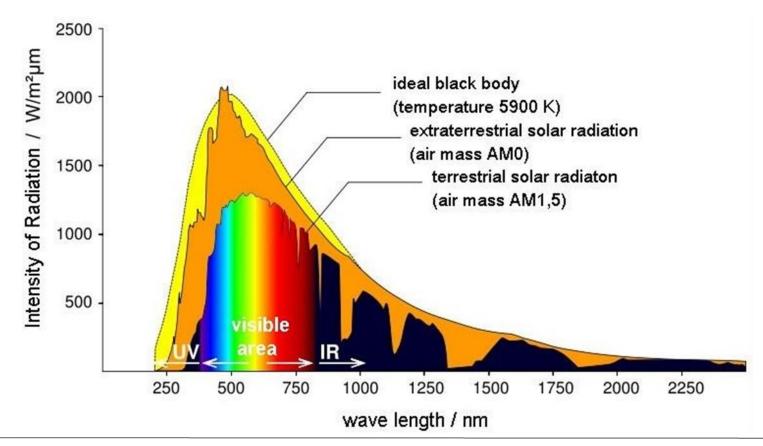
Source: RACHNA, Technical Session 5: Building Materials and Methods of Construction for Affordable Housing, CEPT



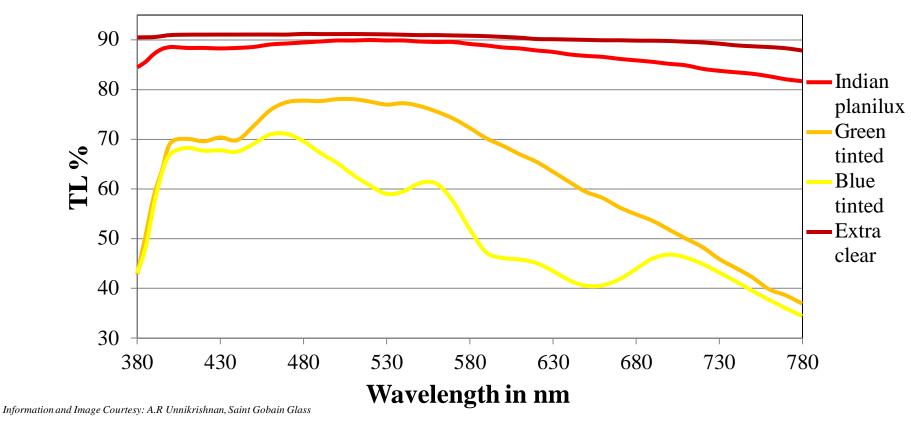
Walling Technologies: U Values, Traditional

Selected Walling Technologies

GLAZING MATERIAL and GLAZING ASSEMBLIES

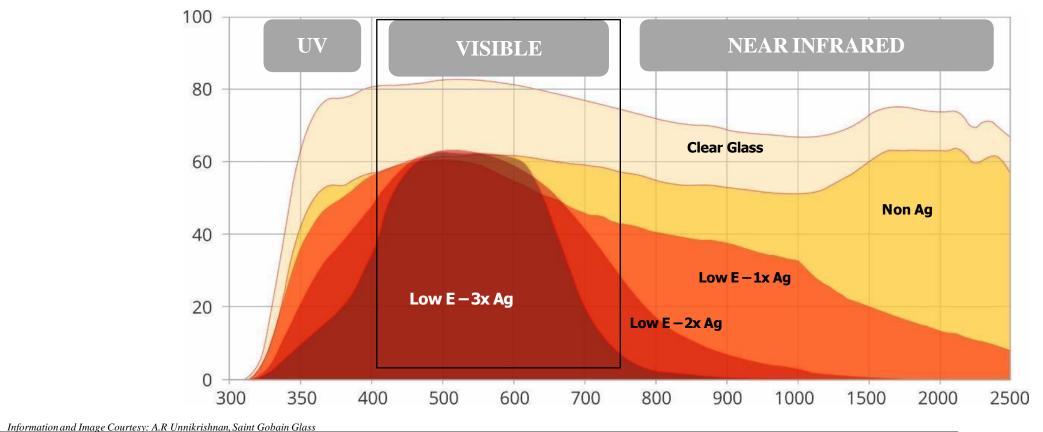


Glazing Material and Methods: Solar Spectrum



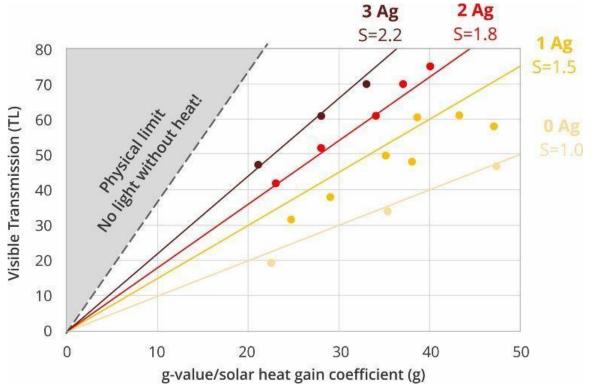
Glazing Material and Methods : Solar Radiation through Glass

Climate Smart Buildings | LHP Ranchi | PMAY Urban



Glazing Material and Methods : Solar Control

Climate Smart Buildings | LHP Ranchi | PMAY Urban



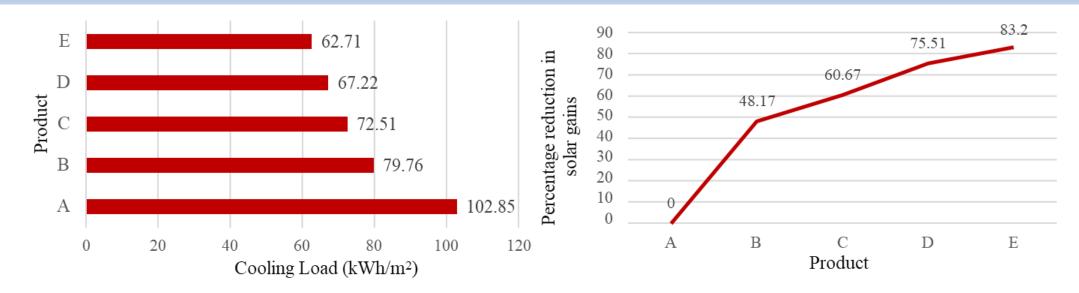
Glazing Material and Methods : Solar Control

Selectivity = $\frac{TL}{g} = \frac{Light}{Heat}$

Silver (Ag) based coater products have the maximum selectivity

The higher the selectivity the better the performance of glass, it enables optimum light to enter our living spaces while blocking excess heat

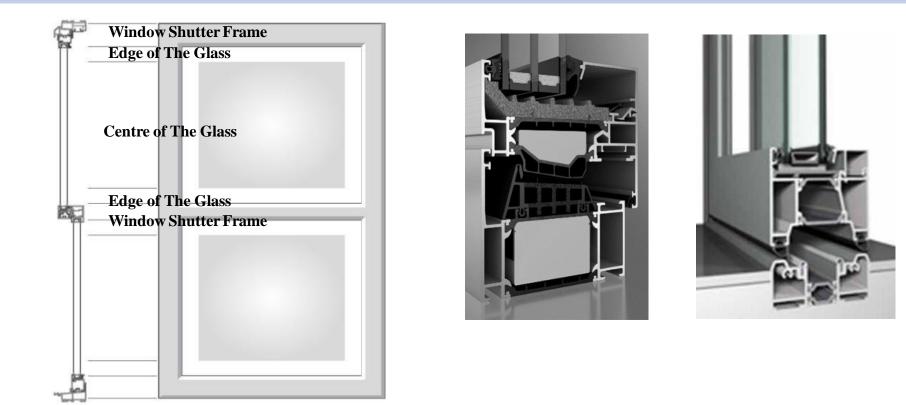
Information and Image Courtesy: A.R Unnikrishnan, Saint Gobain Glass



Glazing Material and Methods : Cooling Load Reduction

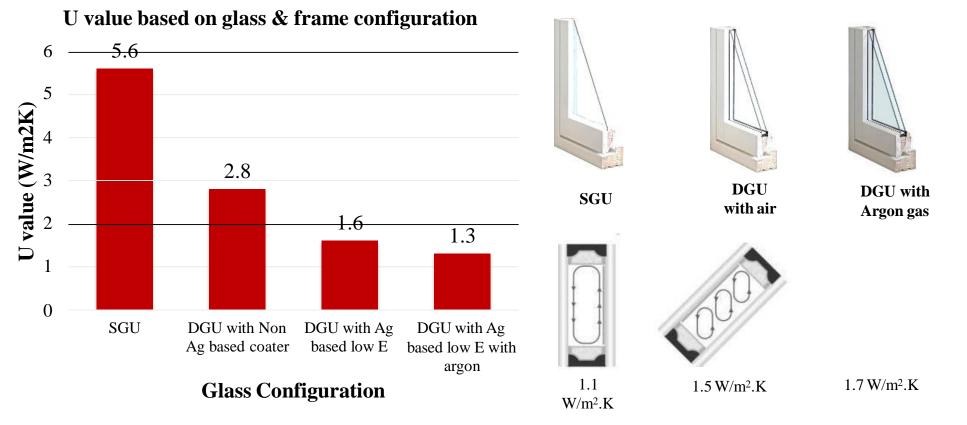
Product	VLT (%)	External Reflection (%)	Internal Reflection (%)	Solar Factor	Shading coefficient	U-value
Α	80	15	15	0.76	0.87	2.6
В	46	16	18	0.22	0.25	1.5
С	46	20	22	0.47	0.54	2.8
D	51	18	22	0.28	0.33	1.5
Ε	47	17	11	0.38	0.43	1.9

Information and Image Courtesy: A.R Unnikrishnan, Saint Gobain Glass



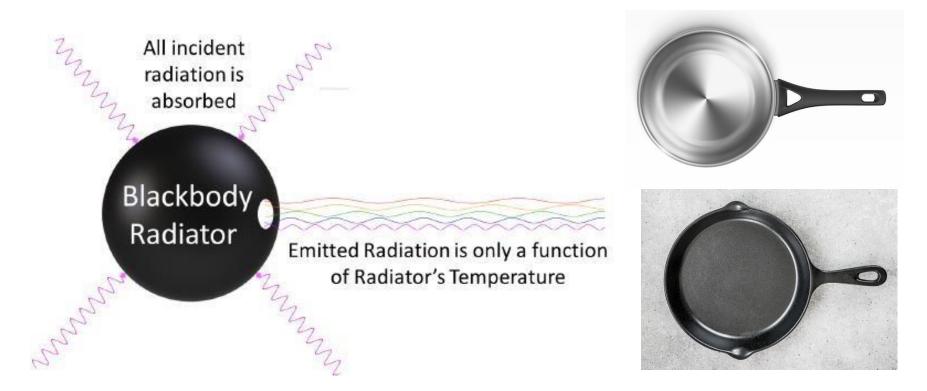
Glazing Material and Methods : Window Frame

Source: Neuffer. (n.d.). Schüco Aws 90. Neuffer. Retrieved from http://192.169.1.1:8090/httpclient.html Grabex. (n.d.). Sliding-Folding Doors For Your Space. Grabex. Retrieved from http://grabex.co.uk/doors/bi-fold-



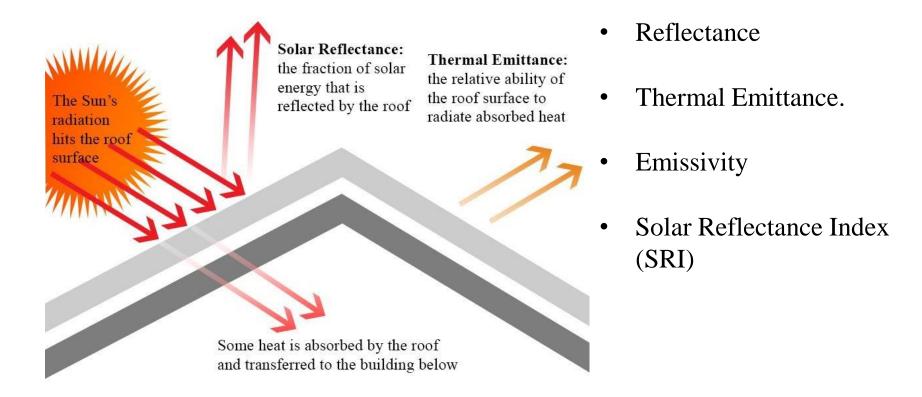
Glazing Material and Methods : Window Frame

ROOFING COATING MATERIAL



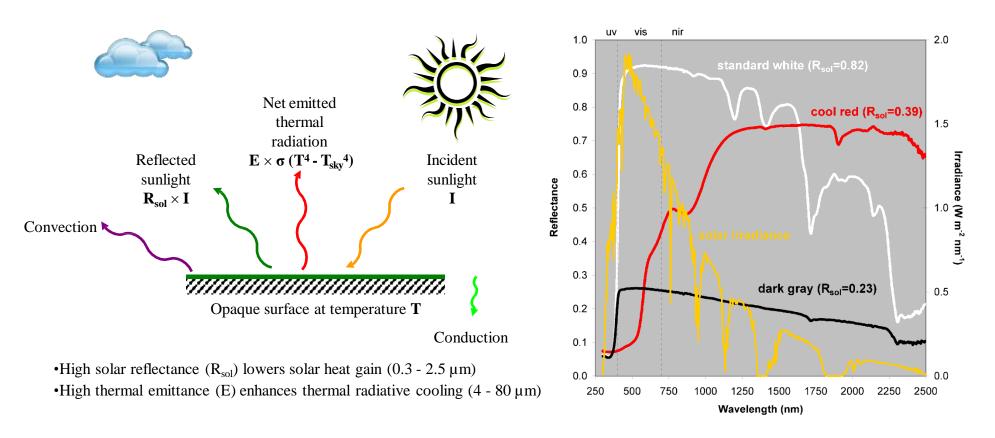
Roofing Coating Material : Black Body

Source: freepik. (n.d.). Food Wood . freepik. Retrieved from https://www.freepik.com/photos/food-wood, freepik. (n.d.). Saucepan. freepik. Retrieved from https://www.freepik.com/vectors/saucepan

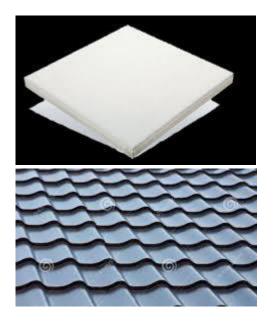


Roof Coating Material and Solar Reflectance Index

Source: ASC Building Products. (2020). Energy-Efficient Cool Colors in Today's Metal Roofing. ASC Building Products. Retrieved from https://www.ascbp.com/cool-colors-and-energy-savings/.



Roof Coating Material and Solar Reflectance Index

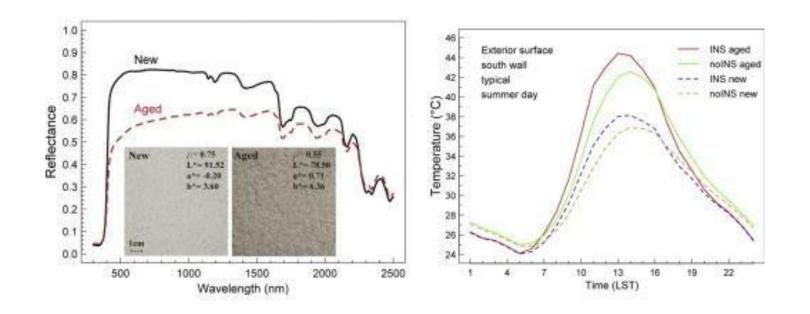


Roof Coating Materials

Paints

Coated Sheets

Tiles



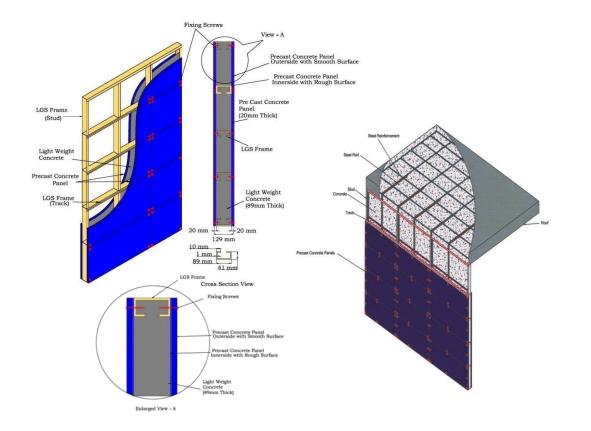
Glazing Material and Glazing Assemblies

Roof Coating Materials

- PM 10, PM 2.5
- Dust, Sooth
- Vegetation

Source: Paolini, R., Zani, A., Poli, T., Antretter, F., & amp; Zinzi, M. (2017). Natural aging of cool walls: Impact on solar reflectance, sensitivity to thermal shocks and building energy needs. Energy and Buildings, 153, 287–296. <u>https://doi.org/10.1016/j.enbuild.2017.08.017</u>

WALLING MATERIAL CASE STUDIES, Light House Projects

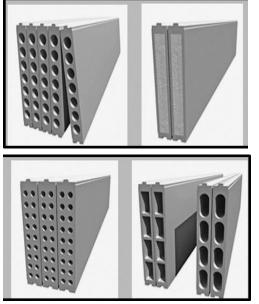


Light House Project: Agartala

- Light Gauge Steel Framed Structure with Infill Concrete Panels (LGSFS-ICP)
- Ground and 06 Floors
- Weight of the LGSFS-ICP building is about 20-30% lighter
- The LSG frames are manufactured using numerically controlled roll
- forming machine using CAD design

Light House Project: Chennai

- Precast Concrete Construction System and Precast component Assembly at the site
- G and 05 Floors
- Precast dense reinforced cement concrete hollow core columns, structural RCC shear walls, T/L/Rectangular shaped beams, stairs, floor/roof solid....
- AAC blocks are used for partition walls



Light House Project: Indore

- Prefabricated Sandwich Panel System
- S and 08 Floors
- Lightweight composite wall, floor, and roof sandwich panels made of thin fiber cement/calcium silicate board
- Face covered boards and the core material is EPS granule balls

Light House Project: Lucknow

- PVC Stay in Place Formwork System
- S and 13 Floors
- Rigid polyvinyl chloride (PVC) based formwork system serves as a permanent stay-in-place durable finished form-work for concrete walls
- The PVC extrusions consist of the substrate (inner) and Modifier (outer). The two layers are coextruded during the manufacturing process to create a solid profile.

•

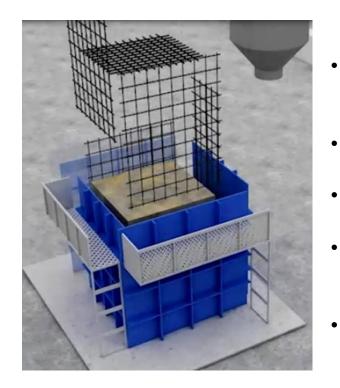
•

•

Walling Material Case Studies, Light House Projects

Light House Project: Rajkot

- Monolithic Concrete Construction using tunnel formwork
- S and 8 Floors
- Tunnel forms are room size formworks that allow walls and floors to be caste in a single pour



Light House Project: Ranchi

- Pre-Cast Concrete Construction System 3D volumetric
- Ground and 8 Floors
- 90% pre-casted at the casting yard
- Use of Fly Ash Ground granulated blast furnace slag (GGBS), micro silica.
- Minimal shutter and scaffolding

Case Studies

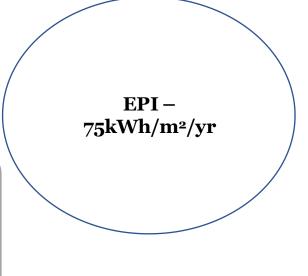
INFOSYS – POCHARAM CAMPUS

LOCATION	HYDERABAD, TELANGANA
COORDINATES	17° N, 78° E
OCCUPANCY TYPE	OFFICE
TYPOLOGY	NEW CONSTRUCTION
CLIMATE TYPE	HOT AND DRY
PROJECTAREA	27,870 m ²

- The Indian Green Building Council (IGBC) has given Infosys, a worldwide consulting and technology firm, the LEED (Leadership in Energy and Environmental Design) India 'Platinum' designation for its Software Development Block 1 (SDB 1) at its Pocharam site in Hyderabad, India.
- The SDB 1 is the first commercial building in India to deploy unique Radiant-cooling technology, setting new norms for energy efficiency in building systems design.

GODREJ PLANT 13 ANNEXE

LOCATION	MUMBAI, MAHARASHTRA
COORDINATES	19° N, 73° E
OCCUPANCY TYPE	OFFICE – PRIVATE
TYPOLOGY	NEW CONSTRUCTION
CLIMATE TYPE	WARM AND HUMID
PROJECTAREA	$24,443\mathrm{m}^2$



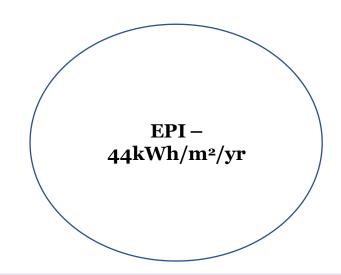
GODREJ PLANT 13 ANNEXE

The Plant 13 Annexe Building at Godrej & Boyce (G&B) in Mumbai has been designated as India's first CII-IGBC accredited Net Zero Energy Building. The structure is a mixed-use office/convention center (with office spaces, conference and meeting rooms, auditoriums (90 to 250 seats), banquet hall, 300person eating facilities, and an industrial kitchen), making certification extremely difficult.

> In 2015, the building received an IGBC Platinum grade in the EB (Existing Building) category, which was recertified in 2019. In 2016, it was also awarded the BEE 5 Star Rating. In 2019, he received the 'Energy Performance Award' for meticulous energy measuring and monitoring. At the CII National Energy Management Award event in 2020, it was named "Excellent Energy Efficient Unit."

INDIRA PARYAVARAN BHAWAN, MoEF

LOCATION	NEW DELHI	
COORDINATES	29° N, 77° E	
OCCUPANCY TYPE	OFFICE & EDUCATIONAL	Image: Constraint of the second se
TYPOLOGY	NEW CONSTRUCTION	
CLIMATE TYPE	COMPOSITE	
PROJECT AREA	9565 m²	



The new office building for the Ministry of Environment and Forest (MoEF), Indira Paryavaran Bhawan, is a significant departure from traditional architectural design

To reach net zero criterion, several energy saving measures were implemented to lower the building's energy loads, with the residual demand being satisfied by producing energy from on-site installed high efficiency solar panels.

The project team focused on measures for lowering energy demand, such as ample natural light, shade, landscape to reduce ambient temperature, and energy-efficient active building technologies

When compared to a conventional building, Indira Paryavaran Bhawan utilizes 70% less energy. The project used green building principles, such as water conservation and optimization through site waste water recycling.

Renewable Energy Integration 930 kWPV panels with a total area of 4650m² for on- site generation, tilted at 23⁰ facing south to generate equivalent to 70kWh/m²/yr

JAQUAR HEADQUARTERS

LOCATION	MANESAR HARYANA
COORDINATES	28° N, 77° E
OCCUPANCY TYPE	CORPORATE AND MANUFACTURI NG
TYPOLOGY	NEW CONSTRUCTION
CLIMATE TYPE	COMPOSITE
PROJECT AREA	48000 m ²

JAQUAR HEADQUARTERS

The building is a perfect blend of modern design sensibilities, biophilic inspiration, and a brand ambition of soaring high.

The Jaguar Headquarters in Manesar is not only a stunning structure, but also a painstakingly constructed complex with cutting-edge technology that has resulted in a net zero campus with a LEED Platinum (USGBC) rating. This project is known for its complex organic design and space arrangement, making it a visual pleasure.

Through its characteristic wing-shaped architecture, the design redefines a business workplace by giving it a memorable experience. The spreading wings of a symbolic eagle, poised to take flight, are atop the horizontal glass edifice, suggesting a firm with worldwide ambitions.

ST. ANDREWS BOYS HOSTEL BLOCK, GURUGRAM

LOCATION	GURUGRAM HARYANA
COORDINATES	28° N, 76° E
OCCUPANCY TYPE	HOSTEL
TYPOLOGY	NEW CONSTRUCTION
CLIMATE TYPE	HOT AND DRY
PROJECT AREA	5574 m ²

ST. ANDREWS BOYS HOSTEL BLOCK, GURUGRAM

The goal of the design process was to increase student interaction within the indoor areas, which then spilled outdoors and interacted with the surrounding landscape.

> On the south and north facades, the linear block was twisted to create a shaded entry (summer court) and an open terrace (winter court), respectively, to stimulate activities at all times of the day and season. The ramp serves as a buffer between the hot outdoors and the cooler interior, preventing kids from experiencing heat shock.

ST. ANDREWS GIRLS HOSTEL BLOCK, GURUGRAM

LOCATION	GURUGRAM HARYANA
COORDINATES	28° N, 76° E
OCCUPANCY TYPE	HOSTEL
TYPOLOGY	NEW CONSTRUCTION
CLIMATE TYPE	HOT AND DRY
PROJECT AREA	2322 m ²

ST. ANDREWS GIRLS HOSTEL BLOCK, GURUGRAM

Indoor and outdoor spaces that connect physically and aesthetically at different levels to encourage interactions and social activities are incorporated into the building's plan.

> The entrance foyer and lobby were planned as outdoor spaces facing west and connected to the pantry so that students can enjoy their nights outside with a spill-out into the green landscape.

AKSHAY URJA BHAWAN HAREDA

LOCATION	PANCHKULA HARYANA
COORDINATES	30° N, 76° E
OCCUPANCY TYPE	OFFICE - PUBLIC
TYPOLOGY	NEW CONSTRUCTION
CLIMATE TYPE	COMPOSITE
PROJECT AREA	5100 m ²

AKSHAY URJA BHAWAN HAREDA

Mechanical air conditioning is used to guarantee thermal comfort in apical zones at all times.

Zones are created based on the intended temperature set points. 25 1 °C for apex offices, 25 3 °C for regulated office and public areas, and 25 5 °C for passive zones.

In the summer, controlled zones are cooled, and in the monsoon, they are chilled. In the summer, passive zones are cooled, while in the monsoon, they are aired. The centre atrium has a mist system for cooling the controlled and passive zones. Water that has been chilled to a temperature of 15°C.

SUN CARRIER OMEGA

LOCATION	BHOPAL M.P.
COORDINATES	23° N, 77° E
OCCUPANCY TYPE	OFFICE – PRIVATE
TYPOLOGY	NEW CONSTRUCTION
CLIMATE TYPE	HOT AND DRY
PROJECT AREA	9888 ft²

GRIDCO BHUBANESWAR

LOCATION	BHUBANESWAR.
COORDINATES	20° N, 85° E
OCCUPANCY TYPE	OFFICE
TYPOLOGY	NEW CONSTRUCTION
CLIMATE TYPE	WARM AND HUMID
PROJECTAREA	$15,793.5{ m m}^2$

GRIDCO BHUBANESWAR

The structure was created using computer simulation to determine how long direct sunshine or radiation was tolerable for human habitat based on the sun-path of Bhubaneswar.

The structure encourages natural light and screen radiation. It would feature photovoltaic glass panels and geothermal cooling systems strategically placed, as well as indigenous solar producing technologies, to ensure that it is self-sustaining.

> Rainwater can be collected, purified, and utilised as drinkable water. Grey water that has been treated can be reused for flushing and landscape irrigation.

DAY 1

Tea Break

DAY 1

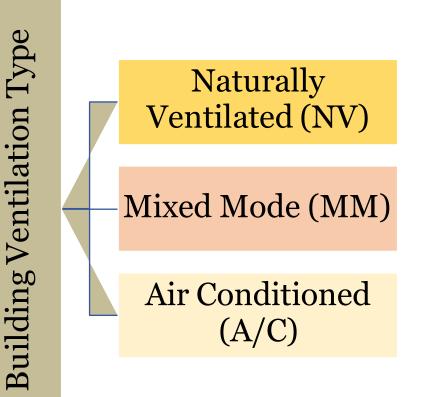
Session 5: Building Codes

...

ΗH

15

Building Codes - IMAC & ASHRAE



- The adaptive thermal comfort model saves more energy in buildings that are naturally ventilated when compared to air-conditioned buildings as residents adjust to wider indoor temperatures than the peripheral thermal comfort zones determined by the PMV model.
- IMAC Classifies the Building Ventilation into three types based on their HVAC system ranging from naturally ventilated to complete Air Conditioning

• The Standard Classification is based on the ADAPTIVE Thermal Comfort model which differentiate the thermal tolerance of occupants accustomed to monotonic temperature (such as air conditioned places) and people habituated to variation in internal temperatures (such as naturally ventilated structures)

> The Indoor operative temperature values for different building types (NV, MM & A/C) are Pre – Calculated for most Indian cities

Naturally Ventilated Buildings

- The Occupants in NV buildings are Thermally adapted to the outdoor temperature of their location.
- The Indoor Operative Temperature of the occupants to stay thermally comfortable is given by the belove equation.

Indoor Operative Temperature (°C) = $0.54 \times Mean Monthly Outdoor DBT + 12.83$

Acceptability range for naturally ventilated buildings is ± 2.38 °C

Mixed Mode Ventilated Buildings

- The MM Ventilated buildings takes into consideration the combination of natural ventilation and the availability of air-conditioning when necessary.
- The Occupants in MMV Buildings thermally adapt to the outdoor temperature more than the A/C buildings & somewhat less adaptive to NV building
- The Indoor Operative temperature for the occupants to stay thermally comfortable is given by the below equation.

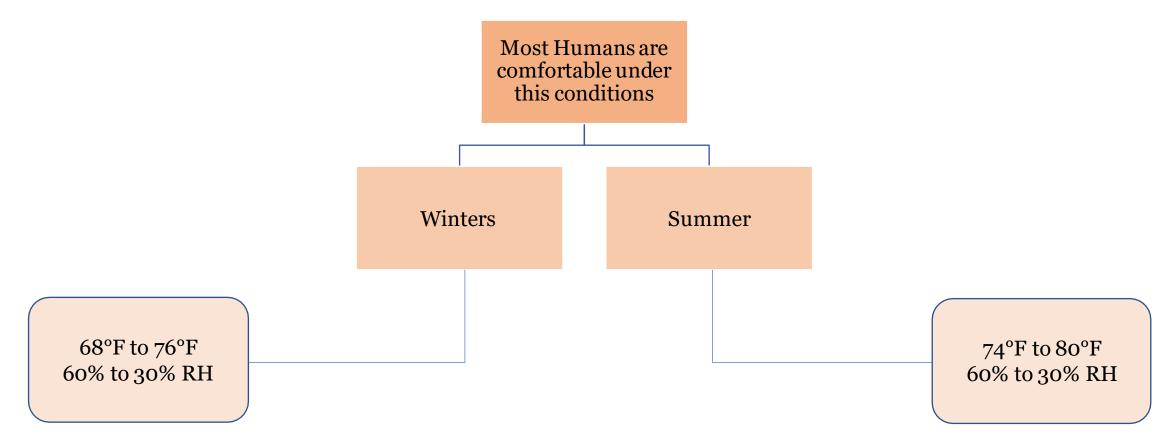
Indoor Operative Temperature (°C) = 0.28 x Mean Monthly Outdoor DBT + 17.87

Acceptability range for Mixed Mode ventilated buildings is ±3.46°C

<u>AC Buildings – Air Temperature based Approach</u>

Indoor Operative Temperature (°C) = 0.078 x Mean Monthly Outdoor DBT + 23.25

Acceptability range for Air-Conditioned buildings is ±1.5°C



ASHRAE 55

Human Comfort Range

Compliance with ASHRAE Standard 55

The comfort zone is regarded sufficient if at least 80% of its occupants are unlikely to object to the ambient state, implying that the majority are between -0.5 and 0.5 on the PMV scale.

Design conditions must maintain the spatial conditions within the acceptable range using one of the methodologies outlined in section 5 of the standard for building systems to comply with ASHRAE, including

natural ventilation systems mechanical ventilation systems

combinations of these systems

control systems

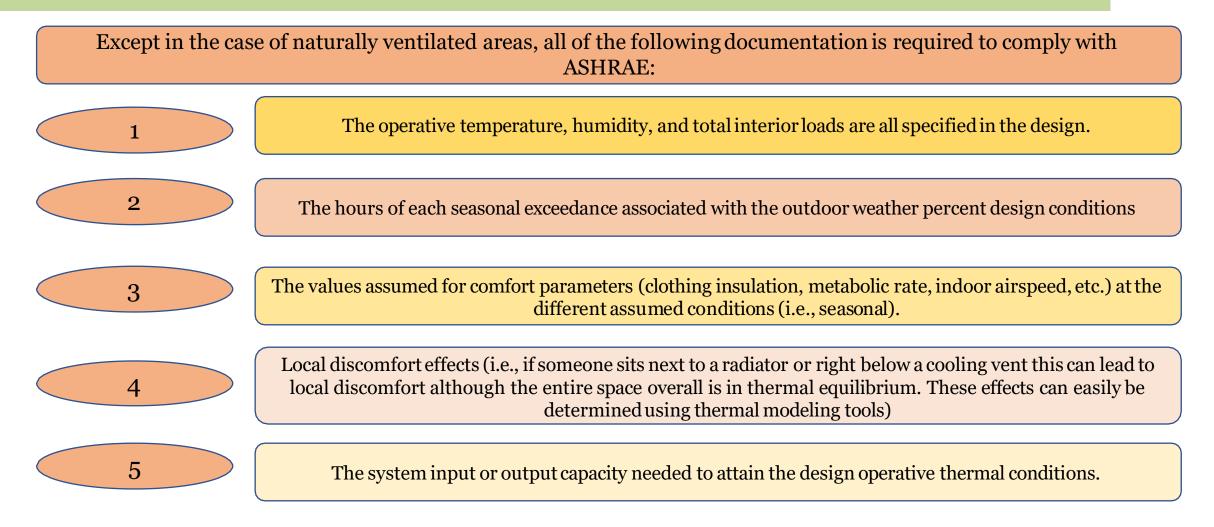
thermal envelopes

They must also account for all expected conditions (summer and winter, although barring extremes), external and internal environmental elements, and any essential documents.

General Requirements & Standard Conditions of ASHRAE 55

The standards and conditions that must be completed in order to comply with ASHRAE 55 are defined in sections 4 and 5. The criterion must be applied to the specific space being evaluated, the inhabitants who will be inhabiting the area, locations within that space if not the entire space, and any outlier occupants, according to general requirements (i.e., children, disabled persons, elderly persons, etc.).

> Because satisfying everyone in a given place is impossible owing to unknown differences, the mandatory requirements that must be met to comply with ASHRAE standard 55 exist in a range of values (physiologically and psychologically). As a result, ASHRAE 55 specifies a certain percentage of occupants as acceptable, as well as the thermal environment values associated with that number.



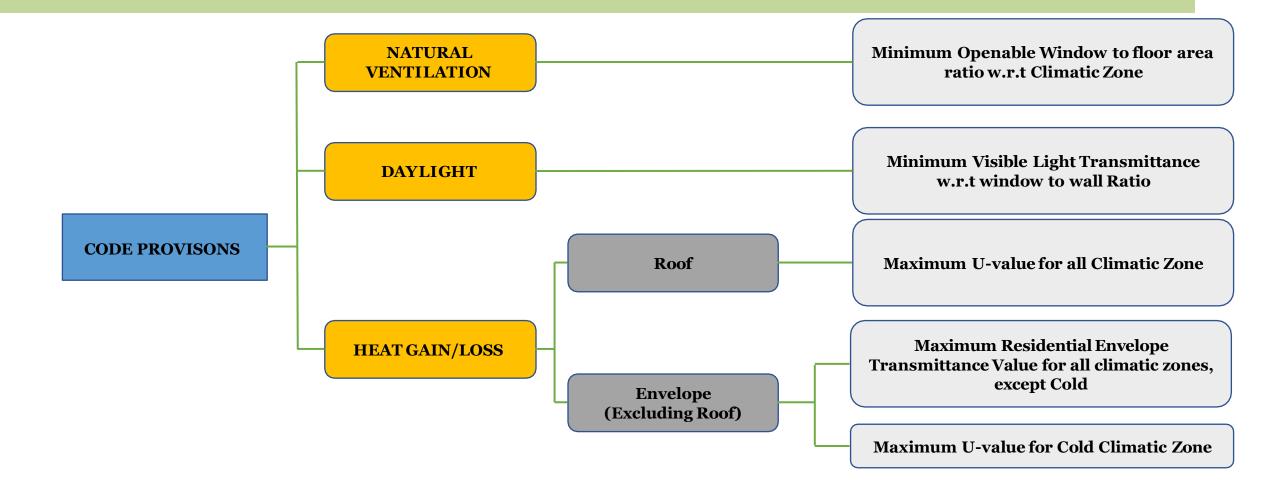
Needed Thermal Comfort Compliance Documentation

....

16

Building Codes – Eco Niwas Samhita 2018 & 2021 and Code Provisions

Climate Smart Buildings | LHP Ranchi | PMAY Urban



Code Provisions by Eco Niwas Samhita for Thermal Comfort in Affordable Housing

SR.NO.	CODE PROVISONS
1	Openable Window to Floor Area Ratio
2	Visible Light Transmission
3	Thermal Transmittance of Roof
4	Residential Envelope Transmittance Value for Building Envelope (Except Roof) for four Climate Zones, namely, Composite Climate, Hot-Dry Climate, Warm-Humid Climate, and Temperature Climate
5	Thermal Transmittance of Building Envelop (Except Roof) for Cold Climate

Openable window to floor area ratio (WFR):

Openable window-to-floor area ratio (WFR) indicates the potential of using external air for ventilation. Ensuring minimum WFR helps in ventilation, improvement in thermal comfort, and reduction in cooling energy

> The openable window-to-floor area ratio (WFR) shall not be less than the values given in Table. (Source Adapted from Bureau of Indian Standards (BIS). 2016. National Building Code of India 2016. New Delhi: BIS.)

Climatic Zone	Minimum WFR
Composite	12.50
Hot-Dry	10.00
Warm-Humid	16.66
Temperature	12.50
Cold	8.33

EQU

WF

Openable window to floor area ratio (WFR):

	Where,	
	WFR	Openable Window to Floor Area Ratio
$FR = \frac{A_{openable}}{A_{carpet}}$	A _{Openable}	Openable area (m ²); it includes the openable area of all windows and ventilators, opening directly to the external air, an open balcony, 'verandah', corridor or shaft; and the openable area of the doors opening directly into an open balcony. Exclusions: All doors opening into corridors. External doors on ground floor, for example, ground-floor entrance doors or back-yard doors.
	A _{Carpet}	carpet area of dwelling units; it is the net usable floor area of a dwelling unit, excluding the area covered by the external walls, areas under services shafts, exclusive balcony or verandah area and exclusive open terrace area, but includes the area covered by the internal partition walls of the dwelling unit

VISIBLE LIGHT TRANSMITTANCE (VLT):

Visible light transmittance (VLT) of nonopaque building envelope components (transparent/translucent panels in windows, doors, ventilators, etc.), indicates the potential of using daylight. Ensuring minimum VLT helps in improving day lighting, thereby reducing the energy required for artificial lighting

> The VLT requirement is applicable as per the window-to-wall ratio (WWR) of the building. WWR is the ratio of the area of non-opaque building envelope components of dwelling units to the envelope area (excluding roof) of dwelling units.

EQUATION FOR VLT

non opaque

A _{envelope}

VISIBLE LIGHT TRANSMITTANCE (VLT):

MINIMUM VISIBLE LIGHT TRASNSMITTANCE (VLT) REQUIREMENT:

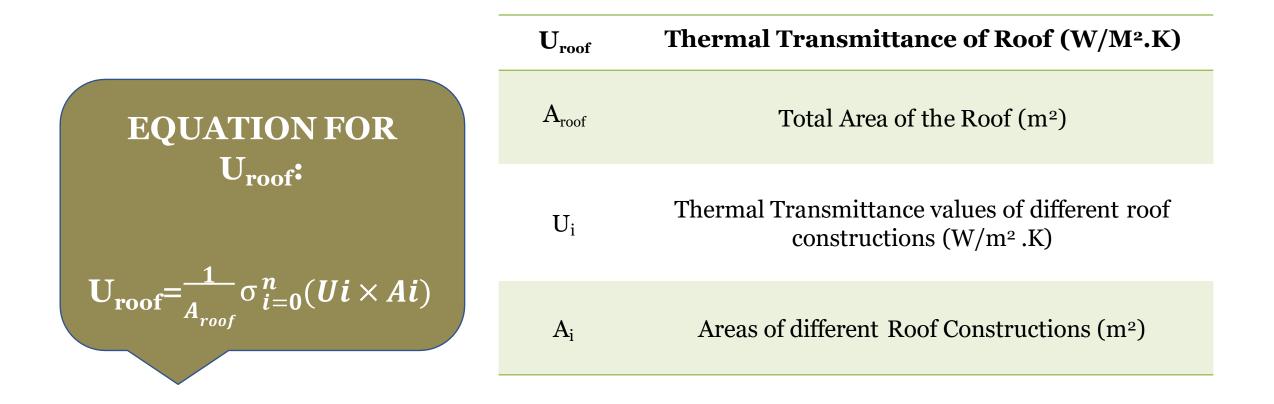
The glass used in non-opaque building envelope components (transparent/translucent panels in windows, doors, etc.) shall comply with the requirements given in Table .(Source Bureau of Indian Standards (BIS). 2016. National Building Code of India 2016. New Delhi: BIS)

Window-to-wall Ratio (WWR)	Minimum VLT
0 - 0.30	0.27
0.31 - 0.40	0.20
0.41 - 0.50	0.16
0.51 - 0.60	0.13
0.61 - 0.70	0.11

THERMAL TRANSMITTANCE OF ROOF - U_{roof}:

Thermal transmittance (U_{roof}) characterizes the thermal performance of the roof of a building. Limiting the U_{roof} helps in reducing heat gains or losses from the roof, thereby improving the thermal comfort and reducing the energy required for cooling or heating.

 $\begin{array}{l} Thermal \, transmittance \, of \, roof \\ shall \, comply \, with \, the \, maximum \\ U_{roof} \, value \, of \, 1.2 \, W/m^2 \, K. \end{array}$



THERMAL TRANSMITTANCE OF ROOF - U_{roof}:

RESIDENTIAL ENVELOPE TRANSMITTANCE VALUE FOR BUILDING ENVELOPE (EXCEPT ROOF):

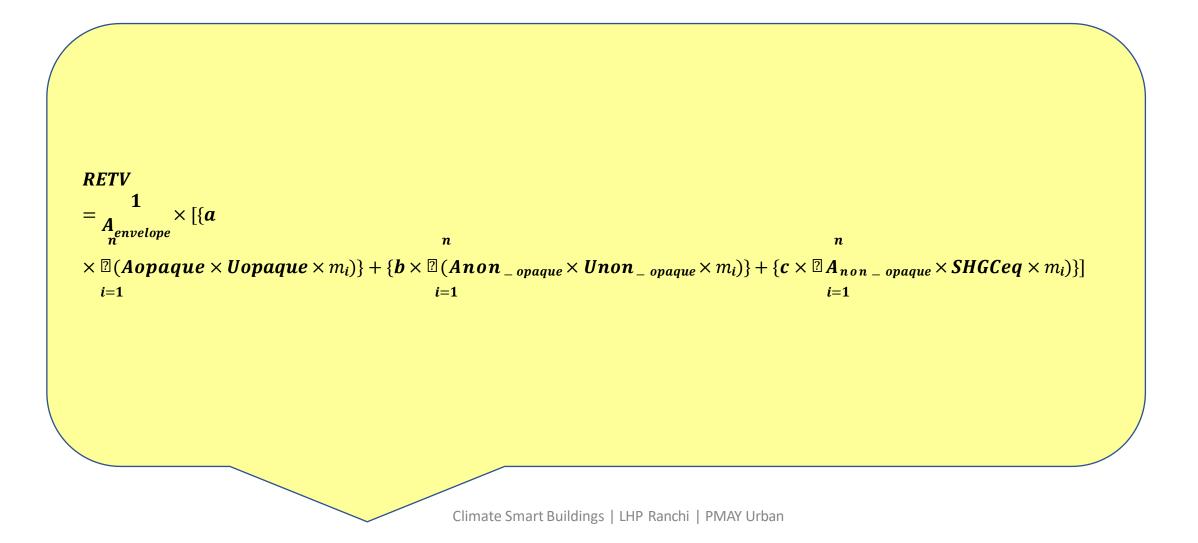
RETV formula takes into account the following:

Heat Conduction through opaque building envelope components (Wall, Opaque, panels in doors, windows, ventilators, etc.

Heat Conduction through non-opaque building, envelope components (transparent/translucent panels of windows, doors, ventilators, etc.)

Solar radiations through non-opaque building envelope components (transparent/translucent panel of windows, doors, ventilators, etc.)

Residential envelope heat transmittance (RETV) is the net heat gain rate (over the cooling period) through the building envelope (excluding roof) of the dwelling units divided by the area of the building envelope (excluding roof) of the dwelling units. Its unit is W/m².



RESIDENTIAL ENVELOPE TRANSMITTANCE VALUE FOR BUILDING ENVELOPE (EXCEPT ROOF):

RESIDENTIAL ENVELOPE TRANSMITTANCE VALUE FOR BUILDING ENVELOPE (EXCEPT ROOF):

RETV EQUATIONS TERMS

$A_{envelope}$	envelope area (excluding roof) of dwelling units (m²). It is the gross external wall area (includes the area of the walls and the openings such as windows and doors).
A_{opaque}	areas of different opaque building envelope components (m ²)
$\mathrm{U}_{\mathrm{opaque}}$	thermal transmittance values of different opaque building envelope components (W/m ² .K)
$\mathbf{A}_{ ext{non-opaque}}$	areas of different non-opaque building envelope components (m ²)
U _{non-opaque}	thermal transmittance values of different non-opaque building envelope components (W/m² .K)
SHGC _{eq}	equivalent solar heat gain coefficient values of different non-opaque building envelope components
ω_{I}	orientation factor of respective opaque and non-opaque building envelope components; it is a measure of the amount of direct and diffused solar radiation that is received on the vertical surface in a specific orientation

Residential Envelope Transmittance Value For Building Envelope (Except Roof):

The coefficients of RETV formula, for different climate zones, are given in Table

Climate Zone	a	b	С
Composite	6.06	1.85	68.99
Hot-Dry	6.06	1.85	68.99
Warm-Humid	5.15	1.31	65.21
Temperature	3.38	0.37	63.69
Cold		Not Applicable for RET	ΓV

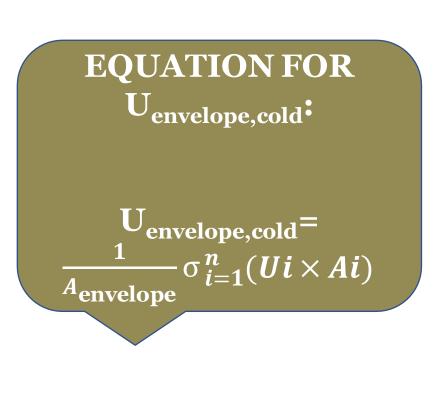
Thermal Transmittance of Building Envelope:

U_{envelope,cold} takes into account the following

Thermal transmittance $U_{envelope,col}$ d characterizes the thermal performance of the building envelope (except roof). Limiting the $U_{env elope,cold}$ helps in reducing heat losses from the building envelope, thereby improving the thermal comfort and reducing the energy required for heating

Heat Conduction through opaque building envelope components (Wall, Opaque, panels in doors, windows, ventilators, etc.

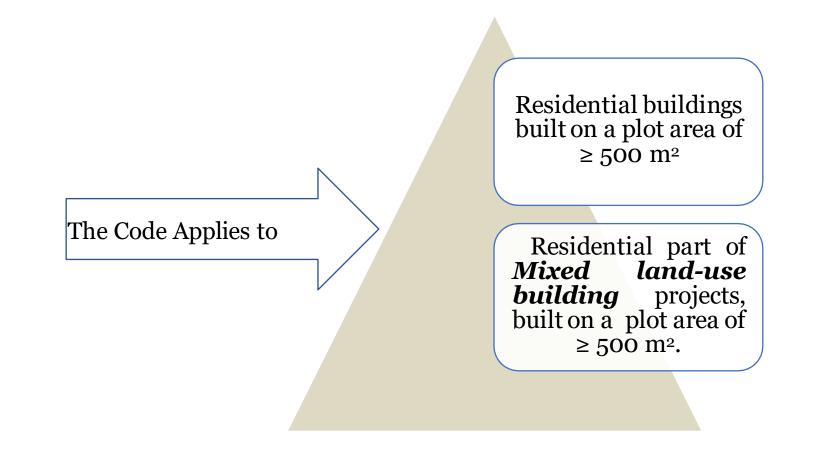
Heat Conduction through non-opaque building, envelope components (transparent/translucent panels of windows, doors, ventilators, etc.)



Thermal Transmittance of Building Envelope:

The Thermal transmittance of the building envelope (except roof) for cold climate shall comply with the maximum of 1.8 W/m^2 .K

U _{envelope,cold}	thermal transmittance of building envelope (except roof) for cold climate (W/m ² .K)		
A _{envelope}	envelope area (excluding roof) of dwelling units (m ²). It is the gross external wall area (includes the area of the walls and the openings such as windows and doors)		
Ui	thermal transmittance of different opaque and non- opaque building envelope components (W/m ² .K)		
A _i	area of different opaque and non-opaque opaque building envelope components (m ²)		



Eco – Niwas Samhita 2021 Scope

ECO – NIWAS SAMHITA 2021 CODE COMPLIANCE

Prescriptive Me	thod		ompliance ndatory +	Point System Method	Additional Score
Components	Minimum Points	Additional Points	Maximum Points		
Building Envelope					
Bu ilding Envelope	47	40	87	Minimum PointsAdditional Points	
Building Services				Maximum Points	
Common area and exterior lig hting	3	6	9		Additional Maximu
Elevators	13	9	22		oints Points
Pumps	6	8	14	ents	
Electrical Systems	1	5	6		
In door Electrical End-Use				Solar Hot Water Sy stems	10 10
Indoor Lighting		12	12		
Comfort Systems		50	50	Solar Photo Voltaic	10 10
ENS Score	70	130	200	Additional ENS Score	20 20

ECO – NIWAS SAMHITA 2021 CODE COMPLIANCE

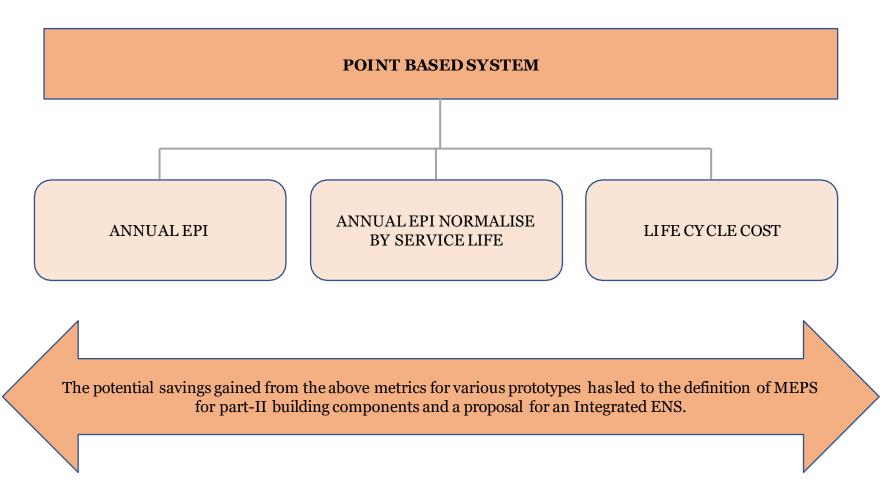
Project Category	Minimum ENS Score
Low rise buildings	47
Affordable Housing	70
High rise buildings	100

Low Rise Buildings: A structure of four stories or less, and/or a structure of up to 15 metres in height (without stilts) and up to 17.5 metres in height (including stilt).

Affordable Housing Projects:

- for Affordable houses are Dwelling Units (DUs)
- for Economically Weaker Section (EWS) category
- For Lower Income Group (LIG) category

High Rise Buildings: A structure with more than four stories and/or a height of more than 15 metres (without stilts) and 17.5 metres (including stilt).



Point Based System

Climate Smart Buildings | LHP Ranchi | PMAY Urban

Mandatory Requirements

- 1. Building Envelope: All of the ENS Part I requirements must be met.
- 2. Power Factor Correction: In all three phases, 0.97 at the point of connection or the state requirement, whichever is more strict.
- 3. Energy Monitoring: Common area lighting (Outdoor lighting, corridor lighting and basement lighting)
 - Elevators
 - Water pumps
 - Basement car parking ventilation system
 - Electricity generated from power back-up
 - Electricity generated through renewable energy systems
 - Lift pressurization system
- 4. Electrical Vehicle Charging Station: If it is installed, it must follow the new criteria for Charging Infrastructure established by the Ministry of Power.
- 5. Electrical Systems: Distribution losses in the ENS building must not exceed 3% of total power demand. At design load, the voltage drop for feeders is less than 2%. At design load, the voltage drop for the branch circuit is less than 3%.

Prescriptive Method

1. Building Envelope:

- ➢ VLT and WFR − as per ENS Part 1
- ▶ RETV (for all climate except cold) max 12 W/m2
- ► Thermal Transmittance for cold max 1.3W/m2K
- \blacktriangleright Roof 1.2W/m2K
- 2. Common Area & Exterior Lighting: Either LPD or Efficacy and use of PhotoSensor

	Maximum	
Com m on Areas	LPD (W/m ²)	Minimum luminous efficacy (lm/W)
Corridorlighting &		All the permanently installed lighting fixtures shall use
StiltParking	3.0	lamps with an efficacy of at least 105 lumens per Watt
	1.0	All the permanently installed lighting fixtures shall use
Ba sement Lighting	1.0	la mps with an efficacy of a t least 105 lumens per Watt

Exterior Lighting Areas	Maximum LPD (in W/m²)
Dr iv eways and parking (open/external)	1.6
Pedestrian walkways	2.0
Stairways	10.0
Landscaping	0.5
Outdoor sales area	9.0

Prescriptive Method

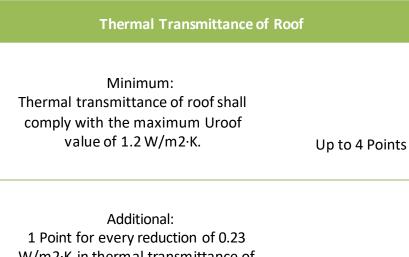
- **3.** Elevators, if applicable::
 - ≻ Lamps: 85l/W
 - Automatic switch off control
 - ➢ IE4 motors
 - > VFDs
 - ➢ Regenerative drives
 - Group Automatic operation
- 4. Pumps, if applicable: Min Eff -70% or BEE 5 Star
- 5. Electrical System, if applicable:
 - Distribution loss less than 3%
 - Dry Type Transformer as mentioned in table
 - > Oil Type Transformer BEE 5 Star

Minimum Points - are a set of points that must be obtained for each component in order to demonstrate ENS compliance

Additional Points - These are the points provided for implementing additional or improved energy efficiency measures in a component. These points can be combined with others to get the total score for ENS compliance described in section 3.1.2.

The total points available for each component are the **maximum points.**

Components	Minimum Points	Additional Points	Maximum Points
Building Envelope			
Building Envelope	47	40	87
Building Services			
Common area and exterior lighting	3	6	9
Elevators	13	9	22
Pumps	6	8	14
Electrical Systems	1	5	6
Indoor Electrical End-Use			
Indoor Lighting		12	12
Comfort Systems		50	50
ENS Score	70	130	200



1 - Building Envelope (87 Max Points out of which 47 are essential)

- Thermal Transmittance of Roof (7 Points)
- RETV (80 Points)

W/m2·K in thermal transmittance of roof from the Minimum requirement prescribed under §6.1(a).

Maximum 3Points

RET V	
The RETV for the buildingenvelope (except roof) for four climate zones, namely, Composite Climate, Hot-Dry Climate, Warm-Humid Climate, and Temperate Climate, shall comply with the maximum RETV of 15 W/m2.	44 Points
For RETV less than 15 and upto 12 W/m2, score will be calculated by following equation:	
7 4 − 2 x (RETV) (@ 2 points per RETV reduction)	Up to 50 Points
Additional: For RETV less than 12 and upto 6 W/m2, score willbe calculated by following equation:	
110–5 x (RETV) (@ 5 points per RETV reduction)	Up to 80 points
Additional:	
For RETV less than 6 W/m2	80 Points

Climate Smart Buildings | LHP Ranchi | PMAY Urban

2 – Common Area and Exterior Lighting (9 Points)

6	Maxim	Minimum luminous efficacy (Im		E		Additional Points (6 points)	
Common Areas	um LPD (W/m²)	ivi in imum	/W)	Corridor lighting &		1 Point for installing 95	
Corridor lighting & Stilt Parking	3.0	lighting fixtures shall use la	permanently installed mps with an efficacy of at least 85	Stilt Pa	, 0	lm/W Or 2 Point for installing 105 lm/W	
Basement Lighting	1.0	Iumens per Watt All the permanently installed lighting fixtures shall use lamps with an efficacy of at least 85 Iumens per Watt		Basem Light		1 Point for installing 95 lm/W Or 2 Point for installing 105 lm/W	
	·Lighting Areas - at Im LPD requireme	least 85 lm/W	Maximum LPD (in W/m²)			2Points for Installing	
Driveways and parking (open/external)		en/external)	1.6	Exterior L Area	0 0	photo sensor or astronomical time	
	Pedestrianwalkw	ays	2.0			switch	
	Stairways		10.0				
	Landscaping		0.5				
	Outdoor sales ar	ea	9.0				

Climate Smart Buildings | LHP Ranchi | PMAY Urban

3 – ELEVATORS (22 Points)

 Minimum: Elevators installed in the ENS building shall meet all the following requirements: i. Install high efficacy lamps for lift car lighting having minimum luminous efficacy of 85 lm/W ii. Install automatic switch-off controls for lighting and fan inside the lift car when are not occupied iii. Install minimum class IE 3 high efficiency motors iv. Group automatic operation of two or more elevators coordinated by supervisory control 	13 Points
Additional: Additional points can be obtained by meeting the following requirements:	
ii. Installing the variable voltage and variable frequency drives. (4 points)	
 Installing regenerative drives. (3 points) Installing class IE4 motors. (2 points) 	9 Points

4 – Pumps (14 Points)

Minimum: Either hydro-pneumatic pumps having minimum mechanical efficiency of 60% or BEE 4 star rated Pumps shall be installed in the ENS building.	6 Points
 Additional: Additional points can be obtained by meeting the following requirements: Installation of BEE 5 star rated pumps (5 Points) Installation of hydro-pneumatic system for water pumping having minimum mechanical efficiency of 70% (3 Points) 	8 Points

5 – Electrical Systems (6 Points)

Minimum:	
i. Power transformers of the proper ratings and design must be selected to satisfy the minimum acceptable efficiencyat 50% and full load rating. The	
permissible	
loss shall not exceed the values listed in Table 8 for dry type transformers and	
BEE 4-star rating in Table 9 for	1 Points
oil type transformers.	
Additional:	
Additional points can be obtained by providing all oil type transformers	5 Points

6 – Indoor Lightings (12 Points)

Minimum: All the lighting fixtures shall have lamps with luminous efficacy of minimum 85 lm/W installed in all bedrooms, hall and kitchen.	4 Points
Additional:	
 Additional points for indoor lighting by installing all lighting fixtures in all bedrooms, hall and kitchen shall have lamps luminous efficacy as per following: i. 95 lm/w (3 Points) ii. 105 lm/W (8 Points) 	Upto 8 Points

7 – Comfort Systems (50 Points) – Ceiling Fans

Minimum:	
i. All ceiling fans installed in all the bedrooms and hall in all the dwelling units shall have a service value as given below:	e
• For sweep size <1200 mm: equal or greater than 4 m3/minute·Watt	
 For sweep size >1200 mm: equal or greater than 5 m3/minute·Watt 	6 Points
i. BEE Standards and Labeling requirements for ceiling fans shall take precedence over the curr	rent
minimum requirement, as and when it is notified as mandatory.	
Additional:	
Additional points for ceiling fans by installing in all the bedrooms and hall in all the dwellingunits as	sper following:
i. 4 Star	1 Points
ii. 5 Star	3 Points

Weighted Average of different Comfort Systems installed in a building allowed for better flexibility (Points Achieved for AC)

Mir i. ii. iii.	imum: Unitary Type: 5 Star Split AC: 3 Star VRF: 3.28 EER	
iv.	Chiller: Minimum ECBC Level	20 Points
Adc	itional 9 points for :	
i.	Split AC: 4 Star	
ii.	VRF: Not Applicable as on date, however, whenever Star labelling of BEE is launched,	
	Star 4 will be applicable	
iii.	Chiller: Minimum ECBC+ Level as mentioned in ECBC 2017	9 Points
Adc	itional 21 points for :	
i.	Split AC: 5 Star	
ii.	VRF: Not Applicable as on date, however, whenever Star labelling of BEE is launched,	
	Star 5 will be applicable	
iii.	Chiller: Minimum SuperECBC Level as mentioned in ECBC 2017	21 Points

8 – Solar Water Heating (10 Points)

Minimum: The ENS compliant building shall provide a solar water heating system (SWH) of minimum BEE 3Star label and is capable of meeting 100% of the annual hot water demand of top 4 floors of the residential building.	
or 100% of the annual hot water demand of top 4 floors of the residential building is met by the system using heat recovery	5 Points
Additional:	
 Additional points can be obtained by installing SWH system as per as per following: i. 100% of the annual hot water demand of top 6 floors of the residential building (2 points) 	
ii. 100% of the annual hot water demand of top 8 floors of the residential building (5 points)	Upto 5 Points

9 – Solar Photo Voltaic (10 Points)

Minimum: The ENS compliant building shall provide a dedicated Renewable Energy Generation Zone	
 (REGZ) – Equivalent to a minimum of 2 kWh/m2.year of electricity; or Equivalent to at least 20% of roof area. The REGZ shall be free of any obstructions within its boundaries and from shadows cast by objects	5 Points
adjacent to the zone.	
Additional: Additional points can be obtained by installing solar photo voltaic as per following:	
 i. Equivalent to a minimum of 3 kWh/m2.year of electricity or Equivalent to at least 30% of roof area (2 points) ii. Equivalent to a minimum of 4 kWh/m2.year of electricity or Equivalent to at least 40% of roof area (5 points) 	Upto 5 Points

Climate Smart Buildings | LHP Ranchi | PMAY Urban

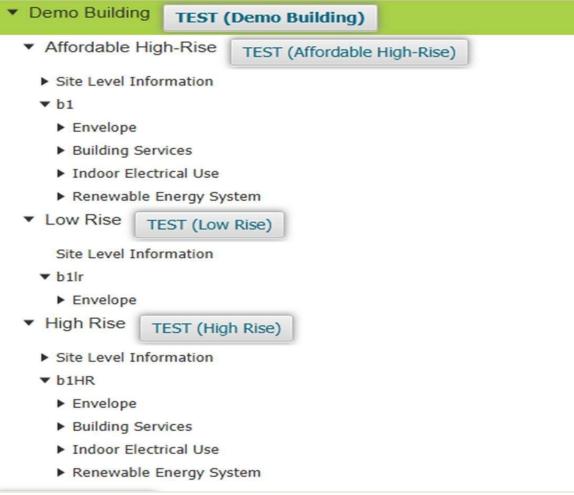
Introduction

- Quick design compliance checks and ٠ benchmarks of ECONIWAS SAMHITA.
- 5 key features in consideration: ٠
 - User friendliness 1.
 - Responsiveness 2.
 - Adaptability 3.
 - Dynamism 4.
 - Resourcefulness. 5.
- Compliance for Both Prescriptive and Points Based ٠ Systems.
- Categories included: ٠
 - High rise 1.
 - Low Rise 2.
 - Affordable 3.
 - Mixed Use 4.

18 Eco-Niwas Samhita: Compliance Check Tool						- 0 X
Ministry of Power Constructs of Hide			ECO-NIWAS SAM			
File Help						ENS Compliance
Demo Building TEST (Demo Building) Affordable High-Rise TEST (Affordable High-Rise)	Project Name		Demo Building	State	Chandigath 💌	HELP ! Climate zones of India
Low Rise TEST (Low Rise)	City		Chandigaith 👻	Climate	COMPOSITE	Composite Does not have a predominant season for more than six months
High Rise TEST (High Rise)	Latitude		>= 23.5" N			
	Project Construc	tion Type	New Building -	Housing Category	High Rise 💌	
	Plot Area (m²)		1500.0	Total no. of Residential Bl	locks 5	
	Compliance Met	hod Used	Points System	Prescriptive System		S. C. Brits of
				Add Categor	y Project Relocate	
		S.No.	Housing Category	Plot Area (m²)	Total Residential	
	i C	1	Affordable High-Rise	10000	10	
pload Siteplan	i 2	2	Low Rise	1000	3	сомонте 0
	1 2	3	High Rise	1500	5	
						U .
						Project Construction type for compliance check
						► ENS Code Purpose & Applicability
						Project Construction Type
						ENS Compliance Criteria
	20					Piot Area
			Total No. of Block	16		Housing Category
			Ford the st Dioch			Total no. of Residential Blocks

• Provisions for multiple housing category addition for compliance evaluation

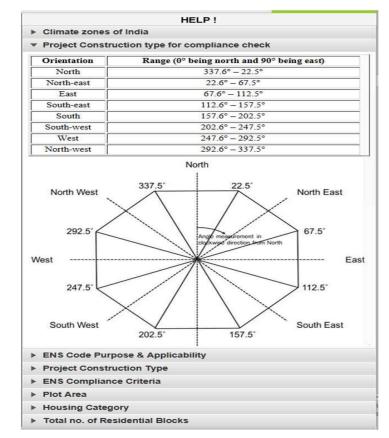
	S.No.	Housing Category	Plot Area (m ²)	Total Residential Block	î
i e	1	Affordable High-Rise	10000	10	
i 2	2	Low Rise	1000	1	
i ¢	3	High Rise	1500	5	
< (>~
		Total No. of Block	16		



• Easy to navigate tree-view structure

• Project relocation feature for multiple domain use

Project Name	Demo Building	State	New Delhi 👻
City	New Delhi 👻	Climate	COMPOSITE
Latitude	>= 23.5° N		
Project Construction Type	New Building 👻	Housing Category	Affordable 👻
Plot Area (m ²)	10000	Total no. of Residential Blocks	10
Compliance Method Used	O Points System	Prescriptive System	
		Add Category	Project Relocate



• Segregated site level & block level inputs for ease in information flow

 Demo Building 	TEST (Demo Building)
 Affordable Hig 	h-Rise TEST (Affordable High-Rise)
▼ Site Level Info	rmation
Basement Li	ghting
Exterior Ligh	iting
Pumps	
Diesel Gener	rator Set
Power Facto	r
Energy Moni	itoring
EV Supply Ed	quipment
Transformer	
Power Distril	bution Loss
Solar Photov	voltaic System
▼ b1	
Envelope	
Building Server	vices
Indoor Electronic	rical Use
Renewable E	Energy System
Low Rise TE	EST (Low Rise)
High Rise T	EST (High Rise)

• Comprehensive help panel on each form for easy user referencing

• Component level display for mandatory provisions and pointsachieved

Site Level Information												
▼ b1lr	Energy Monitoring	:										
► Envelope					-							
▼ High Rise TEST (High Rise)	Availability		 Energy 	MeteringType	Select	-						
 Site Level Information 		Meter Segregted Recording For:										
▼ b1HR	Meter Segregted R	Meter Segregted Recording For:										
Envelope Building Services	Basement	Basement Lighting Corridor Lighting Outdoor Lighting Power Backup Generation										
Common Area Lighting												
Lifts	Elevators	Elevators RE Generation Lift System Car Park Vent System Water Pumps										
Pumps												
▼ Electrical System	Data Recording	Interval	Select	 Digital Co 	ontrol System/E	MIS Installed Select	-					
Diesel Generator Set	Reporting Frequency:											
Power Factor	Keporting Frequen	cy:										
Energy Monitoring	Data Retaining	Capability	of DCS/EMIS (Year/	s) Select	-							
EV Supply Equipment												
Transformer												
Power Distribution Loss	Hourly		Daily	Monthly	Annually							
Car Parking		S No.	Energy Metering	Recoment Li	Corridor Li	Power BackUp Gen.	Outdoor Ligh	t Eleveter	Car Park	100		
 Indoor Electrical Use 										VVa		
Renewable Energy System	- 1	1	Smart	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
Upload Energy Monitor												
	S.U.			Mandatan Co		Achieved						
				Mandatory Com	pliance	Achieved						

File Help									
Site Level Information	Transformer:								
▼ b1lr	Availat	oility		Select Type		BEE Sta	ar Rating	Voltage Rating C	lass
► Envelope	Yes	-		Select 👻		Select	-	Select	-
High Rise TEST (High Rise)	TES			Select		Select		Select	· _
 Site Level Information 									
▼ b1HR									
► Envelope									
 Building Services 									
Common Area Lighting									
Lifts	10/0 5								
Pumps	KVA R		Max L	osses at 50% Loa	ading(vv)	Max Losses	at 100% Loading(W)	
▼ Electrical System	Select	-				1			
Diesel Generator Set									
Power Factor									
Energy Monitoring									
EV Supply Equipment									
Transformer									
Power Distribution Loss									
Car Parking									
Indoor Electrical Use		S.No.	Transformer	BEE Star R	Rating Cl	. KVA Rati	Max Loss at 50	Max Loss at 100	
Renewable Energy System	- e	1	Oil	BEE 5 Star	Upto 22KV	25	100.0	500.0	
Upload Transformer									
				Total Point	Achieved	6			
				Total Point	Achieved	-			

Compliance Result			- D X
		Eco-Niv	s Samhita Compliance Result
Affordable High-Rise Low Rise High Ri	ise		
Envelope Building Services Indoor Electrical	Use Renewable Energy Fi	nal Result	
	Point Achieved	Total Points	
Building Envelope	50	87	
Building Services	47	51	Total Points Achieved 156Total Maximum Points 220
Indoor Electric Use	47	62	
Renewable Energy System	12	20	Compliant
			Generate Report

• Provisions for PDF output reporting for each input and corresponding output

×								Eco-Niwas Samhita: Co	mpliance Chec	k Report				
	Eco-Niwas Samhita: Compliance Check Report							1. Affordable High-Rise : Compliance Result 1.1. Building Envelope:						
									Mandatory	Calculated solars	Defents Ashiened	Maximum Points		
		5.		Requirements	Calculated value	Founts Achieved	Maximum Foints							
			1 RETV(W/m ² .K)	NA	14.59	44	80							
			2 U-Value Roof(W/m ² .K)	NA	0.53	6	7							
				EEVALUA				3 WFRop	Achieved	32.0	NA	NA		
			REF	PORT				4 VLT %	Achieved	60.0	NA	NA		
Total Points Total Maximum							1.2. Bi	ilding Services:						
Achieved Points 156 220							S.No.	Component	Mandatory Requirements	Calculated value	Points Achieved	Maximum Points		
150	Project Info	rmation					1	Exterior Lighting	NA		3	3		
				r			2	Basement Lighting	NA		2	3		
	Project Name			Demo Building			3	Corridor Lighting	NA		3	3		
	State			Chandigarh			4	Lift	NA		22	22		
	City			Chandigarh			5	Pump Diesel Generator Sets	NA Achieved	-	11 NA	14 NA		
	Climate			COMPOSITE			0	Power Factor	Achieved		NA	NA		
	Latitude			>= 23.5° N				Correction	Achieved	(777) 	N/A	INA		
	Building Construction Type			New Building			8	Energy Monitoring	Achieved	-	NA	NA		
Compliant	Compliance Method Used Point System						9	System Electric Vehicle Supply	Achieved		NA	NA		
	Housing Cate	gory Information	on					Equipment	richeved		1973			
					,		10	Transformer	NA		6	6		
	Housing	Plot Area(m ²)	Total No. of Residential	Total Basement Area(m ²) Total Exterior Light Area(m ²) Total Roof Area(m ²)		Power Distribution Loss	Achieved		NA	NA				
	Category		Blocks	Area(m ²)	Light Area(m ²)	Area(m-)	12	Car Parking Basement Ventilation	Achieved		NA	NA		
	Affordable High-Rise	10000	10	1000.0	1000.0	1000.0	1	door Electrical End			0			
	Low Rise	1000	1	1000.0	1000.0	1000.0	S.No.	Component	Mandatory	Calculated value	Points Achieved	Maximum Points		
	High Rise	1500	5	100.0	100.0	100.0			Requirements					
							1	Indoor Lighting	NA		12	12		
							2	Ceiling Fan Cooling Equipment	NA NA		28	41		
								6	7.a		20	41		
							1.4. Re	enewable Energy Sys	tem:					
	Eco-N	liwas Samhita: 0	Compliance Ch	eck Report			S.No.	Component	Mandatory Requirements	Calculated value	Points Achieved	Maximum Points		
	Eco-Niwas Samhita: Compliance Check Report						1	Solar Hot Water Requirements	NA		7	10		
Generate Report	Consolidated	Consolidated Compliance Status of the Project:							NA		5	10		
	S.No. Hot	using Categories	Total Point	s Maximum Po	ints Minimum Po	oints Compliance Status								
	1 Affor	dable High-Rise		220	70	Compliant								
Course , unum acominate com	2	Low Rise	53	87	47	Compliant								
Source : www.econiwas.com	3	High Rise	82	220	100	Non Compliant								

DAY 1

Q & A Session

DAY 1

Vote of Thanks

THANK

YOU