

Innovative Construction Technologies & Thermal Comfort for Affordable Housing

Training 69 29th July 2022 Hyderabad

Presented by CSB Cell - South

Thermal comfort

Thermal Comfort – Definition

It is defined as "that condition of mind which expresses satisfaction with the thermal environment." This condition is also some times called as "neutral condition", though in a strict sense, they are not necessarily same for everyone.

Internationally Engineers & designers look up to following standards for thermal comfort conditions:

- ASHRAE 55 (American Society of Heating, Refrigerating, and Air Conditioning Engineers)
- ISHRAE (Indian Society of Heating, Refrigerating, and Air Conditioning Engineers)
- **IMAC** (Indian Model for Adaptive Thermal Comfort)

Thermal Comfort – Indices

Mode of Heat Transfer – Influencing Thermal comfort

Thermal Comfort Indices – Metabolic Rate

Source: https://www.simscale.com/blog/2019/08/what-is-ashrae-55-thermal-comfort/

Thermal Comfort Indices – Clothing Insulation

- The clothing factor used to represent the thermal insulation from clothing
- The unit for measuring the resistance offered by clothes is called as "clo"
 - Radiation heat loss/gain
 - Convection heat loss/gain
 - Surface area exposed
 - 1 clo : 0.155 m²K/W
 - Winter clothing : 1.0 clo
 - Summer clothing : 0.5 clo

Thermal Comfort – Impact of Radiant Temperature

- Uniform Temperature of an imaginary Enclosure
- Measure of the effect of Radiant interchanges at a point in space
- Depends on the surrounding environment & envelope

Thermal Comfort Indices – Environmental Factors

Indices	Air Speed	Humidity	Air Temperature
Definitions	Rate of Air Movement	Percentage of the amount of moisture the air could possibly hold	Average temperature of air surrounding an occupant
Controls	Fan Speed Wind speed Window Opening	Humidifier Dehumidifier	Insulated Envelope Heat Ingress/Egress
Heat Influence	Convective Evaporative	Evaporation	Convective Evaporative

Thermal Comfort Indices – Environmental Factors

Problems due to High Humid Conditions		
Stuffy air		
Condensation on windows and walls		
Mold spots or water stains		
Musty smells		
Allergies		
Skin problems		
Swollen woods		
Moist fabrics		

Problems due to Low Humid Conditions		
🖵 Dry air		
Vulnerable to Cold		
Infections		
Itchy & Dry Skin		
Damage to wood furniture & paints		
Increased static electricity		
Electronics damage		

Building Physics - Air Changes per Hour (ACH)

Air changes per hour (ACH) is a measure of how many times the air within a defined space is replaced in a hour

$$N = \frac{60Q}{Vol}$$

N = number of air changes per hour

Q = Volumetric flow rate of air in cubic feet per minute (cfm)

Vol = Space volume L × W × H, in cubic feet

Thermal Discomfort due to Building factors

Local Thermal Discomfort

• The local thermal discomfort is **unwanted cooling or heating** on a particular part of an occupant's body

Asymmetric radiant field (Cold floor, warm wall, equipment & sunlight)

Too warm or too cold Flooring

Local convective cooling (draught)

Vertical Air temperature difference (Warm air near head & Cold air near feet)

Draught

 Vertical Air Temperature Differences.

 Floor temperature

Thermal Discomfort – Sick Building Syndrome

SICK BUILDING SYNDROME

Sick building syndrome (SBS) is used to describe situations in which building occupants experience acute health and comfort effects that appear to be linked to time spent in a building

shutterstock.com · 1813988624

Necessity of Thermal comfort in Affordable Housing

Affordable Housing Demand

India is projected to double its energy demand and have the largest increase in energy consumption worldwide between 2020 and 2040.

ENERGY DEMAND (TWH) ■ 2012 ■ 2030 ■ 2047 4712 2239 1840 842 762 238 S 86 RESIDENTIAL COMMERCIAL **OVERALL**

Source: India 2020 Energy Review Policy

Source: NITI Aayog 2015

Increase in AC demand in the Residential Sector

In 2017, approximately 272 million households were estimated in India which will increase to 328 and 386 million in 2027 and 2037 respectively.

Source: Ministry of Environment, Forest & Climate Change. (2019). India Cooling Action Plan & NITI Aayog 2015

Impetus of Thermal Comfort in Affordable Housing

11.2 Million houses under the PMAY scheme, with a lifespan of 50 to 60 years

LIG and EWS segment will not have access to active air-conditioning.

Passive strategies to achieve thermal comfort in Affordable housing

• Eco Niwas Samhita (ENS) – Part 1 (Building Envelope)

Active strategies to achieve thermal comfort in Affordable housing

• Cool-roof programs

Implementation & Enforcement measures

• Regulatory and policy actions in the adoption of energy efficient building practices Promoting capacity building and fostering market awareness

Thermal Comfort Improvement in a Building

2. For adequate day light for visual comfort

 For Adequate natural ventilation potential for thermal comfort

3

3. Limit heat gains / heat loss for energy efficiency

Thermal Comfort Improvement Strategies

Passive Strategies

- 1. Orientation
- 2. Thermal Mass
- 3. Roof and Wall Materials
- 4. Non Opaque material properties
- 5. Appropriate Shading Design
- 6. Minimize Infiltration losses
- 7. Climate specific design interventions
- 8. Mutual / Tree Shading

Active Strategies

1. Renewable

Energy

- 2. Direct / Indirect
 - Evaporative
 - Cooling
- 3. Cool roofs

Government of India

Passive Measures - Orientation

Passive Measures - Thermal Mass

- Denser thermal mass materials are more effective passive solar materials. Thus, denser the material the better it stores and releases heat.
- Integrate thermal mass with an efficient passive solar design, by considering the placement of added mass.
- Do not substitute thermal mass for insulation. It should be used in conjunction with insulation

Passive Measures - Roof and Wall Materials

The properties of building materials act as building envelopes by resisting the external temperature and humidity, mostly influenced by indoor thermal comfort. The materials having lower thermal conductivity, thermal diffusivity, and absorptivity has the properties of less temperature swing on the inside surface of the walls compared to the materials with high thermal conductivity

- Green roofs.
- Louvre and shading devices.
- Insulation
- Low energy cooling techniques
- Wind catchment and ventilation
- High solar reflective surface.

Passive Measures - Non Opaque Material Properties

- Three of the most important properties of the materials, coatings, and constructions that make up windows, skylights, translucent panels, or other products used to let sunlight into a building include:
 - Thermal conductance (U-value)
 - Solar Heat Gain Coefficient (SHGC)
 - Visible Light Transmittance (VT)
- Appropriate values for glazing properties vary by climate, size, and placement of the aperture.

Government of India

Passive Measures - Shading

Passive Measures - Minimal Infiltration Losses

- Infiltration is the unintentional or accidental introduction of outside air into a building, typically through cracks in the building envelope and through use of doors for passage. Infiltration is sometimes called air leakage.
- Reducing air infiltration is often the first action item of a weatherization plan. Caulking cracks, sealing an unused fireplace, and adding weatherstripping are simple, low-cost improvements that can reduce air infiltration.

Typical places to check for air infiltration include:

- Electrical outlets, switches, and ceiling fixtures
- Operable features of windows and doors check for a loose fit
- Window and door frames where they meet the wall
- Wall or window-mounted air conditioners
- Plumbing, electrical, cable, and telephone penetrations
- Ducts in unconditioned spaces.

Passive Measures - Climate Specific Design Interventions

The climate responsive design refers to **the architecture that reflects the particular region-specific weather conditions of the peculiar area**. It uses data of weather patterns and factors like sun, wind, rainfall, and humidity. The building structure is built according to the same.

Factors Affecting Climatic Design:

- Topography elevation, slopes, hills and valleys, ground surface conditions.
- Vegetation height, mass, silhouette, texture, location, growth patterns.
- Built forms nearby buildings, surface conditions. and ventilation heat flow.

Passive Measures - Mutual Shading

Mutual Shading: June 21st

12 storey tower typology residential building

LATITUDE: 28.6° LONGITUDE: 77.2

Passive Measures - Quantitative Impact of Mutual Shading

Thermal Comfort Models

Thermal Comfort Standard – IMAC R

Indian Model for Adaptive Thermal Comfort (IMAC) models for neutral temperature and acceptability limits for naturally ventilated residential buildings through an empirical field study specific to the Indian context. It offers an energy-efficient pathway for the building sector without compromising occupant comfort.

Location: Rajkot 90% 80% Acceptability Accep Temperature Temp (depr(_) (depr	otability perature C.)
Months Description Acceptability Acceptability Acceptability Temperature Temp	otability perature C.)
Months Description Acceptability Accept Temperature Temp (degC.) (degr	otability oerature 2.)
Temperature Temp	erature 2.)
(degC.) (degC	C.)
(4686)	
Minimum 24.13	22.68
Jan Tnuet 26.28	26.28
Maximum 28.43	29.88
Minimum 25.52	24.07
Feb T nuet 27.67	27.67
Maximum 29.82	31.27
Minimum 26.87	25.42
Mar Tnuet 29.02	29.02
Maximum 31.17	32.62
Minimum 28.48	27.03
Apr T nuet 30.63	30.63
Maximum 32.78	34.23
Minimum 28.78	27.33
May Tnuet 30.93	30.93
Maximum 33.08	34.53
Minimum 28.58	27.13
Jun Tnuet 30.73	30.73
Maximum 32.88	34.33
Minimum 27.38	25.93
Jul Tnuet 29.53	29.53
Maximum 31.68	33.13
Minimum 27.04	25.59
Aug Tnuet 29.19	29.19
Maximum 31.34	32.79
Minimum 27.09	25.64
Sep Tnuet 29.24	29.24
Maximum 31.39	32.84
Minimum 27.83	26.38
Oct T nuet 29.98	29.98
Maximum 32.13	33.58
Minimum 26.56	25.11
Nov Tnuet 28.71	28.71
Maximum 30.86	32.31
Minimum 25.11	23.66
Dec Tnuet 27.26	27.26
Maximum 29.41	30.86

30

Thermal Comfort Standard – ASHRAE 55

- The adaptive model is based on the idea that outdoor climate influences indoor comfort because humans can adapt to different temperatures during different times of the year.
- These results were incorporated in the ASHRAE 55-2004 standard as the adaptive comfort model. The adaptive chart relates indoor comfort temperature to prevailing outdoor temperature and defines zones of 80% and 90% satisfaction.
- This model applies especially to occupantcontrolled, natural-conditioned spaces, where the outdoor climate can actually affect the indoor conditions and so the comfort zone.
- Adaptive models of thermal comfort are implemented in other standards, such as European EN 15251 and ISO 7730 standard.
- There are basically three categories of thermal adaptation, namely: behavioral, physiological, and psychological.

Thermal Comfort Standard – ASHRAE 55

Summer design conditions: 22.5 to 26.1 °C RH 60%

Winter design conditions: 20.0 to 23.9 °C RH 60%

- The comfort zone is considered to be sufficiently comfortable if at least 80% of its occupants can be expected to not object to the ambient condition, meaning that the majority are between -0.5 and 0.5 on the PMV scale.
- E1. THERMAL ENVIRONMENT POINT-IN-TIME SURVEY
 1. Record the approximate outside-air temperature _______ and seasonal conditions: Winter Spring Summer Fall
 2. What is your general thermal sensation? (Check the one that is most appropriate)

(Note to survey designer: This scale must be used as-is to keep the survey consistent with ASHRAE Standard 55.)

Hot
Warm
Slightly Warm
Neutral
Slightly Cool
Cool
Cold

6	Are you near a window (within 15 ft)?
	No
	Yes

Are you near an exterior wall (within 15 ft)?

Are yo	u near	a winc	low (with	in 15 f
Yes				

🗌 No

5.

6.

7. Using the list below, please check each item of clothing that you are wearing right now. (Check all that apply):

(Note to survey designer: This list can be modified at your discretion.)

Short-Sleeve	Dress	Nylons
Long-Sleeve Shirt	Shorts	Socks
T-shirt	Athletic Sweatpants	Boots

STANDARD

ANSI/ASHRAE Standard 55-2020 (Supersedes ANSI/ASHRAE Standard 55-2017) Includes ANSI/ASHRAE addenda listed in Appendix N

Thermal Environmental Conditions for Human Occupancy

Thermal Comfort Standard – ASHRAE 55

- Predicted mean vote (PMV) is an index that predicts the mean value of the thermal sensation votes (self-reported perceptions) of a large group of persons on a sensation scale expressed from -3 to +3 corresponding to the categories
- Predicted percentage of dissatisfied (PPD) is an index that establishes a quantitative prediction of the percentage of thermally dissatisfied people

Effects of Materials on Thermal comfort

Thermal Comfort Improvement through Materials

Materials without Insulation

Wall materials	U Value (W/sqmK)	
150 mm RCC (No plaster)	3.77	
200 mm Solid Concrete Block with plaster on both sides	2.8	
230 mm Brick with plaster on both	1 72-2 24	
sides	1.72 2.27	
200 mm Autoclaved Aerated		
Concrete (AAC) with plaster on both	0.77	
side		
300 mm Autoclaved Aerated		
Concrete (AAC) with plaster on both	0.54	
side		

Thermal Comfort Improvement through Materials

Glazing Options

Thermal Comfort Improvement through Materials

Thermal Comfort Improvement through Materials

Glazing Selection

U-value / U-factor

- **Conductive Heat Transfer** ۲
- Thermal conductivity (W/sqmK) ۰
- Glass & Frame
- Lower the better?? ۰

VLT – Visual Light Transmission

- Light passing through the glass
- Ratio
- Useful light vs Glare
- Higher the better?? ۰

SHGC – Solar Heat Gain Coefficient

- **Radiation Transmission** ۰
- Amount of Heat passes through the glass ۰
- Lower the better?? ۰

Selectivity

- VLT / Solar Factor
- Ratio
 - Higher the better??

Case Study

Case Study : Smart Ghar, Rajkot

A CASE STUDY ON DESIGN OF THERMALLY COMFORTABLE AFFORDABLE HOUSING IN COMPOSITE CLIMATE: SIMULATION RESULTS & MONITORED PERFORMANCE by

Saswati Chetia, Sameer Maithel, Pierre Jaboyedoff, Ashok Lall, Prashant Bhanware, Akshat Gupta

- Project Type PMAY Housing
- Location Rajkot
- Dwelling Units 1176
- DU Area 33.6 m²
- Ext Wall 200mm AAC (E&N) & Cavity Wall (200mm AAC + 40mm air gap + 200mm AAC) (W&S Side)
- Casement windows for ventilation improvement
- Window shading Overhang & Side fins
- Glazed window

Case Study : Smart Ghar, Rajkot

Validation by Software

- Simulated period May 12, 2019 to May 22, 2019
- Software used DesignBuilder 4.7 (EnergyPlus 8.3 simulation engine)

Results

- Indoor temperature for the bedroom goes up to a maximum average of 32.7°C during the day and minimum average of 30.6°C early morning. The maximum average ambient temperature was 39.3°C, while the average minimum ambient temperature was 27.8 °C.
- Thus compared to the diurnal variation of 11.5 °C in the ambient temperatures, the diurnal variation in indoor temperature was only 2.1 °C.

Case Study : Smart Ghar, Rajkot

Observations

Monitoring period

Case Study : Smart Ghar, Rajkot

Results

 For the present study, the Indian Model for Adaptive Comfort (IMAC) is chosen as the thermal comfort model. It is observed that all hours of the monitored period falls within the 80% acceptability limits whereas 87% of the monitored period falls within the 90% acceptability limits.

Conclusion

- The results of the monitoring show a **quantifiable impact of building envelope** (both construction material and openings for ventilation) on internal temperatures.
- It shows that with building envelope interventions it is possible to get maximum average temperature of 32°C in summer when the average maximum ambient temperature is 39°C, thus, increasing comfortable hours and reducing the need for airconditioning.

Eco Niwas Samhita

Eco Niwas Samhita (ENS)

BEE (BUREAU OF ENERGY EFFICIENCY)

Government of India

Eco Niwas Samhita Part 1

GIZ (Deutsche Gesellschaft für Internationale Zusammenarbeit)

Government of Germany

Launch of Eco Niwas Samhita in December 2018

Ministry of Housing and Urban Affairs

Government of India

Eco Niwas Samhita (ENS)

ECO Niwas Samhita - The EE code for residential buildings is now comprised of 2 parts

	Scope of ENS
New building	 Residential Buildings with (Plot area ≥ 500Sqm) built up area of 800 sqm/ Connected load ≥ 35kW
Mixed Land Use	 Residential part of "Mixed Land-use building projects" with (Plot area ≥ 500Sqm) built up area of 800 sqm/ Connected load ≥ 35kW
Additions	 All additions made to existing residential buildings with (Plot area ≥ 500Sqm) built up area of 800 sqm/ Connected load ≥ 35kW/
Alterations	 Alterations made to existing residential buildings with (Plot area ≥ 500Sqm) built up area of 800 sqm/

Eco Niwas Samhita (ENS)

The code is applicable to

(b) Residential part of "Mixed Land-use building projects" built on plot area of ≥ 500m².

Excluded from the code

Dormitories

Hotels

Lodging Rooms

Scope of ENS (Setting Minimum Requirement)

Eco Niwas Samhita (ENS) Benefits

Improve Thermal Comforts

Reduce Electricity Bills

Estimated Impact Of Implementing Eco Niwas Samhita

Minimum 20% energy saving as compared to a typical Building
 125 billion KWH of electricity Saving
 100 million tonnes of CO₂ equivalent abatement

Performance Standards for Building Envelope

3.1 Openable Window to Floor Area Ratio (WFR_{op})

Window to floor area ratio is the ratio of Openable area to the carpet area of the dwelling Units.

ENS – Part 1 – Building Envelope

3.1 Openable Window to Floor Area Ratio (WFR_{op})

Casement

Sliding (2 Panes)

Sliding (3 Panes)

Climate Zone	Minimum WFRop
Composite	12.50
Hot-Dry	10.00
Warm-Humid	16.66
Temperate	12.50
Cold	8.33

o	′	70		

90%

50%

C70/

3.2 Window to Wall Area Ratio (WWR)

WWR – Window to wall area ratio Area (non-opaque) -Total glass area in the opening. Excluded - Opaque part of the total opening size. Area(Envelope) -Total envelope area of all facades. Included – opague and non-opague

Relation between WWR and Visual Light Transmittance

Window to Wall Ratio (WWR)	Minimum VLT
0-0.30	0.27
0.31-0.40	0.20
0.41-0.50	0.16
0.51-0.60	0.13
0.61-0.70	0.11

ENS – Part 1 – Building Envelope

3.3 Thermal Transmittance (U_{roof})

Thermal transmittance of roof shall comply with U_{roof} value – 1.2 W/m².k

3.4 Residential Envelope Transmittance (RETV)

3.4 Residential Envelope Transmittance (RETV)

TABLE 3 Coefficients (a, b, and c) for RETV formula

Climate zone	а	b	c	
Composite	6.06	1.85	68.99	
Hot-Dry	6.06	1.85	68.99	
Warm-Humid	5.15	1.31	65.21	
Temperate	3.38	0.37	63.69	
Cold	Not applicable (Refer Section 3.5)			

RETV for the building envelope (except roof) for four climate zones, namely, Composite Climate, Hot-Dry Climate, Warm-Humid Climate and Temperate Climate shall comply with the maximum RETV of **15 W/m²**

3.4 Thermal Transmittance Value (U-Value) Non Opaque

U	= 1 / R _t	U-value	U-value is the reciprocal of Thermal Resistance (R)			
U = 1/ (R	.so + ∑R _n + R	l _{si})		_	Rn +	
	Wall	Roof		R_{se}		R _{si}
	All climatic	Composite , Hot-Dry, Warm-	Cold			
	Zones	humid, and Temperate climate	climate			
Rsi	0.13	0.17	0.10	Outside		Inside
(m2.K/W)						
Rse	0.04	0.04	0.04			
(m2.K/W)					Y	

Source: Eco Niwas Samhita -2018, Table 6, Annexure - 5

3.4 Thermal Transmittance Value (U-Value) Non Opaque

3.4 Solar Heat Gain Coefficient (SHGC) Non Opaque

Solar heat gain coefficient is the measure of solar heat –

- Absorbed
- Transmitted

Lower SHGC \propto lesser Heat Transfer

Solar Radiation is subsequently released inward through conduction, convection and radiation.

60

3.5 Thermal Transmittance – Wall (Except roof) for Cold Climate (U envelope, cold)

$$U_{envelope,cold} = \frac{1}{A_{envelope}} \left[\sum_{i=1}^{n} (U_i \times A_i) \right]$$

The thermal transmittance of the building envelope (except roof) for cold climate shall comply with the maximum of **1.8 w/M²K**

	Area (sq mt)	U- value (w/m²k)	
Wall (opaque)	2793.38	0.78	AAC Wall
Door (opaque)	210	5.23	Wooden Door Glass Window
Window (non- opaque)	475.88	5.80	
J envelope,cold	$=\frac{(2793.38\times0.78)}{2793.38}$	$-(210.00 \times 5.23) + (474.38 + 210.00 + 474.88)$	$\frac{.88 \times 5.80}{.000} = 1.73 \text{ W/m}^2$

ENS – Part 1 – Building Envelope

3.4 Projection Factor (PF)

Projection Factor (PF) is the ratio of the horizontal depth of the external shading projection (H overhang) to the bottom of the farthest point of the external shading projection (V overhang), in consistent units.

3.4 Equivalent SHGC

SHGC _{unshaded} = Transmission + Secondary heat gain

Incident Solar radiation

External Shading (overhang, side fins) cut the solar radiation

External Shading Factor (ESF_{total} \leq 1) accounts the impact of shading.

SHGC_{eq} = SHGC _{unshaded} X ESF_{total}

3.4 Orientation Factor

The orientation factor (ω) is a measure of the amount of direct and diffused solar radiation that is received on the vertical surface in a specific orientation

Orientation	Orientation factor (ω) Latitudes <23.5°N	
North (337.6°-22.5°)	0.659	
North-east (22.6°-67.5°)	0.906	
East (67.6°-112.5°)	1.155	
South-east (112.6°-157.5°)	1.125	
South (157.6°-202.5°)	0.966	
South-west (202.6°-247.5°)	1.124	
West (247.6°-292.5°)	1.156	
North-west (292.6°-337.5°)	0.908	

υ4

ENS – Part 1 – Building Envelope

Case 1	External wall	Roof Construction	Glazing	Window to wall Ratio	
		230mm thick Solid Burnt Clay Brick	150 mm thick RCC slab + 50mm thick EPS	50 mm Steel Frame; Single glazed Unit U Value = 5.7 W/m2k, SHGC = 0.56, VLT=0.51	22.55%
			RETV – 14.92	W/m².K	

ENS – Part 1 – Building Envelope

Case 2		External wall	Roof Construction	Glazing	Window to wall Ratio
	SINGLE GLAZED WINDOW	200mm thick AAC Block wall	150 mm thick RCC slab + 50mm thick EPS	50 mm Steel Frame; Single glazed Unit U Value = 5.7 W/m2k, SHGC = 0.56, VLT=0.51	22.55%
			RETV – 9.71	W/m².K	

ENS – Part 1 – Building Envelope

Case 3		External wall	Roof Construction	Glazing	Window to wall Ratio
	DUBLE GLAZED WINDOW	200mm thick AAC Block wall	150 mm thick RCC slab + 50mm thick EPS	Double glazed Unit - Asahi LC 54/37 U Value =	22.55%
	AIR SPACE SPACER DESICCANT SEAL			1.64 W/m2k, SHGC = 0.36, VLT=0.52	
			RETV – 6.62	W/m².K	

ENS – Part 1 – Building Envelope

Case 4		External wall	Roof Construction	Glazing	Window to wall Ratio
		200mm thick AAC wall, 50 mm EPS, high SRI paint	150 mm thick RCC slab + 50mm thick EPS	Double glazed Unit - Asahi LC 54/37	22.55%
	DOUBLE GLAZED WINDOW GLASS AIR SPACE SPACER DESICCANT SEAL			U Value = 1.64 W/m2k, SHGC = 0.36, VLT=0.52	
			RETV – 5.13	W/m².K	

Building Design Flexibility by ENS

Material wall Assembly

Design of Window Panel

Shading of external Windows

ENS Part 2

Government of India

ENS – Part 2 – Services

ENS – Part 2 - Code Compliance

Low Rise Buildings:

A building equal or below 4 stories, and/or a building **up to 15 meters in height** (without stilt) and up to 17.5 meters (including stilt).

Affordable Housing Projects:

Affordable houses are Dwelling Units (DUs) with Carpet Area less than 60 sqm. It also includes Economically Weaker Section (EWS) category and Lower Income Group (LIG) category (LIG-A: 28-40 sq. m. and LIG-B 41-60 Sq.m.).

High Rise Buildings:

A building above 4 stories, and/or a building **exceeding 15 meters** or more in height (without stilt) and 17.5 meters (including stilt).

ENS – Part 2 - Documentation

ENS – Part 2 - Mandatory Requirements

ENS – Part 2 - Mandatory Requirements

Chapter 4 of ENS Part I		Building Envelope
All 3 phase shall maintain the power factor of 0.97 at the point of connection		Power Factor Correction
Total Electrical Energy		Energy
Electrical Consumption of Applicable End Use Systems)	Monitoring
Guidelines issued by Ministry of Power for EV Charging on Oct 1 st 2019		EV Charging Systems
Electrical Consumption of Applicable End Use Systems		Electrical Systems

ENS – Part 2 - Prescription Requirements

Prescriptive Method:

To demonstrate compliance with ENS Code through Prescriptive method, ENS building shall meet the following:

ENS – Part 2 - Prescription Requirements

Building Envelope:

Thermal transmittance of roof shall comply with the maximum Uroof value of 1.2W/m2.K

ENS – Part 2 - Code Compliance- Point Based System

ENS – Part 2 - Code Compliance- Point Based System

Maximum Points are TOTAL Points available for each component

Minimum Points

Additional Points

- Minimum Points are set of points which are compulsory to achieve for each component to show compliance for ENS
- Additional Points are the set of points which are awarded for adopting additional or better energy efficiency measures in a respective component. These points are trade able with other components to achieve the total score mentioned in section 3.1.2 for ENS compliance

ENS – Part 2 - Code Compliance- Point Based System

Components	Minimum Points	Additional Points	Maximum Points
Building Envelope			
Building Envelope	47 Points	40 Points	87 Points
Building Services			
Common area & Exterior Lighting	3 Points	6 Points	9 Points
Elevators	13 Points	9 Points	22Points
Pumps	6 Points	8 Points	14 Points
Electrical Systems	1 Point	5 Points	6 Points
Indoor Electrical End Use			
Indoor Lighting		12 Points	12 Points
Comfort Systems		50 Points	50 Points
ENS SCORE	70 Points	130 Points	200 Points

ENS – Part 2 – Services

Common Area and Exterior Lighting

Common Areas	Maximum LPD (W/m2)	Minimum Luminous Efficacy (lm/W)
Corridor Lighting & Stilt Parking	3.0	All permanently installed lighting fixtures shall use lamps with an efficacy of at least 85 lumens per Watt
Basement Lighting	1.0	All permanently installed lighting fixtures shall use lamps with efficacy of at least 85 lumens per Watt

ENS – Part 2 – Services

Common Area and Exterior Lighting

Exterior Lighting Areas/Zones	Maximum LPD (in W/m2)
Driveways and Parking	1.6
Pedestrian Walkways	2.0
Stairways	10.0
Landscaping	0.5
Outdoor Sales Areas	9.0

Parking (open/external)

Stairways

ENS – Part 2 – Services

Common Area and Exterior Lighting

Areas/Zones	Points 95lm/W	Points 105lm/W + Photo
Corridor Lighting and Stilt Parking	1	2
Basement Lighting	1	2
Exterior Lighting Areas	1	2

Basement Lighting

Exterior Lighting

ENS – Part 2 – Services

Elevators – Maximum 22 points

ENS – Part 2 – Services

Elevators – Maximum 22 points

ENS – Part 2 – Services

Pumps – Maximum 14 points

ENS – Part 2 – Services

Electrical Systems – Maximum 6 points

POWER TRANFORMERS

- Power transformers to satisfy minimum acceptable efficiency at 50%
- Permissible loss as per Table 8 for dry ٠ type and Table 9 for Oil Type transformers

OIL TYPE TRANFORMERS

Oil Type Transformers With BEE 5 **STAR**

(5 POINTS) 88

POINTS)

ENS – Part 2 – Services

Indoor Lighting– Maximum 12 points

ENS – Part 2 – Services

Comfort Systems– Maximum 50 points

Ceiling Fans: Points for ceiling fans will be only applicable and could be achieved if all the bedrooms and hall in all the dwelling units are having ceiling fans

ENS – Part 2 – Services

Comfort Systems– Maximum 50 points

Air Conditioners:

Points for air conditioners will be only applicable and could be achieved if all the bedrooms in all the dwelling units are having air conditioners (either unitary, split, VRF or centralized plant)

ENS – Part 2 – Services

Comfort Systems– Maximum 50 points

CHILLER : ECBC+

* VRF not applicable as on Date. Whenever BEE Star rating is launched, it will be applicable.

CHILLER : SUPER ECBC

ENS – Part 2 – Services

Solar Water Heating

Solar Water Heating

- SWH of minimum BEE 3 Star label and meeting 100% of Top 4 floors OR
- 100% of Annual Hot Water demand of Top 4Floors is met by using heat recovery

6 POINTS

- 100% of Annual water demand for Top 6 floors (2points)
- 100% of Annual water demand for Top 8 floors (5 points)

ENS – Part 2 – Services

Solar Photovoltaic

- Dedicated Renewable Energy Zone (REGZ)
- Minimum of 2kWh/m2 year of electricity

- At least 20% of roof area
- Free of any obstructions and shadows

5 Points

- Min. of 3kWh/m2 of Electricity / 30% of roof area (2 points)
- Min. of 4kWh/m2 of electricity /40% roof area (5 points)

Conventional Building Vs ENS Building

Conventional Brick wall, roof and single glazed windows, traps heat Proper shading, glazing, Wall & Roof insulation reduces impact of heat

Increases in cross-ventilation reduces dependency on Air conditioners & coolers, thereby reduces electricity bills

Non-insulated roof absorbs more heat and radiates inside the building

Proper Insulating materials can reduced heat gain

Java based ENS compliance check tool has been developed to check compliance for residential

	pro	oject.	
Eco-Niwas Samhita: Compliance Check Tool	And Address of the Owner of the	to branch through the state	
Ø			Ministry of Power Events of Inda
File Help			ECBC-R Compliance
Residential project-1 Check Compliance (Residential project-1)	Project Name	Residential project-1	HELP !
Wall Check Compliance (Building A)	State	Maharashtra 👻	India can be broadly categorised into 5 climatic zones, with the following characteristics:
Window Ventilator	(h)	Market and	Climate Zone [Mean monthly max. temp.] Mean monthly relative humidity Hot dry Above 30°C Below 55%
Door Roof	City	Mumbai	Warm humid Above 30°C Above 55% Above 25°C Above 75%
	Climate	WARM & HUMID	Temperate 25-30°C Below 75% Cold Below 25°C All values
	Latitude	< 23.5° N	Composite Does not have a predominant season for more than six months
CUpload Siteplan	Block Type for Compliance Check N	40. of Blocks Add Block Project Relocate	
	Block Type for Compliance Check	Number of Blocks	a server to the top of the
	Building A	2 2	
c	Total No. of Bioc	x 2	Building block type for compliance check

Available on Bureau of Energy Efficiency's website for download.

Link - https://beeindia.gov.in/content/ecbc-residential

Project related details are entered in the tool for compliance check

Climate data after entering the project location details

Details of various building components will be added for Compliance check- Architectural drawings(plans, sections and elevations)

Image: Construct of India Image: Construct of Cons
File Help ECBC-R Compliance thial + toject check Compliance (Intal Project) Window Ventilator Door Wall tofe <litofe< <="" td=""></litofe<>
ECBC-R Compliance ECBC-R Compliance ECBC-R Compliance (Trial Project) BLOCK-A Check Compliance (BLOCK-A) Window Ventilator Door Add S.No. Type of DU No. of Units Carpet Area/ Total Area (m²) Wall 1 2-BHK 56 65.0 3640.0 Image: Carpet Area (m²) Roof Image: Carpet Area (m²) Image: Carpet
Intel Foject Check Compliance (Intal Project) V BLOCK-A Check Compliance (BLOCK-A) Window Ventilator Door Add Vall 1 2-BHK 56 65.0 3640.0 Image: Compliance (Compliance (
BLOCK-A Check Compliance (BLOCK-A) Window Type of Dwelling Unit No. of Units Carpet Area/DU (m²) Ventilator Add Door S.No. Type of DU No. of Units Carpet Area/ Total Area (m²) Wall 1 2-BHK 56 65.0 3640.0 Image: Carpet Area/
Window Type of Dwelling Unit No. of Units Carpet Area/DU (m²) Add Ventilator S.No. Type of DU No. of Units Carpet Area/ Total Area (m²) Wall 1 2-BHK 56 65.0 3640.0 Image: Carpet Area/
Ventilator Add Door S.No. Type of DU No. of Units Carpet Area/ Total Area (m²) Wall 1 2-BHK 56 65.0 3640.0 Roof Image: State of the sta
Door S.No. Type of DU No. of Units Carpet Area/ Total Area (m²) Wall 1 2-BHK 56 65.0 3640.0 Roof
Wall 1 2-BHK 56 65.0 3640.0 Roof Image: Strate
Roof
Upload Siteplan

Construction material details are entered in the tool. Window details are shown here for example

B. Eco. Niver Sambita Compliance C. ck Tool							
							Ministry of Power Government of India
File Help							ECBC-R Compliance
 Trial Project Check Compliance (Trial Project) 	Window Construction	on Details:					HELP !
▼ BLOCK-A Check Compliance (BLOCK-A)	Window Na	Window Shape	Height (m)	Width (m)	Area (m ²)	No. of Windo	Window height and width
Window	W1	Rectangle -	1.5	1.5	2.25	3	▶ Window openable %
Ventilator	Window Typ	e Open	%	Fixed %			Glazed area % and Opaque area %
Door	Glazing Details:						► Glass dimension
Wall	Glazing %	45 He	ight (m)	650	Width (m)	1375	▶ Glazing details
Roof		45	igin (iii)		wider (m)	1373	Opaque material properties
	Define Glazing	Material	▼ Single	Glazing	*	_	
	U-value(W/m ²	5.8	SH	0.8	VLT %	85.0	
	Opaque Elements D	etails:					
< >	Opaque %	Definition Me	Materia	I Туре — ТІ	hickness (m)	U-value(W/	
Upload Siteplan	55.0	Propert 🔻		v	0	1.2	
		Select	Window W	/indow He	ight(m) Widt	h(m) Area(m ²)	
		Properties					
			No content	table			

All the details related to window are submitted for the compliance

Similarly, other block details are added in the table for checking different design alternatives

BEE Star Labelling for Residential Buildings

BEE – STAR LABELLING

Table for Building Energy Star Rating Programme More than 50 % air conditioned built up area

Climatic Zone- Composite

EPI(Kwh/sqm/year)	Star Label
190-165	1 Star
165-140	2 Star
140-115	3 Star
115-90	4 Star
Below 90	5 Star

Climatic Zone - Warm and Humid

EPI(Kwh/sqm/year)	Star Label
200-175	1 Star
175-150	2 Star
150-125	3 Star
125-100	4 Star
Below 100	5 Star

Climatic Zone - Hot and Dry

EPI(Kwh/sqm/year)	Star Label
180-155	1 Star
155-130	2 Star
130-105	3 Star
105-80	4 Star
Below 80	5 Star

Table for Building Energy Star Rating Programme Less than 50 % air conditioned built up area

Climatic Zone- Composite

EPI(Kwh/sqm/year)	Star Label
80-70	1 Star
70-60	2 Star
60-50	3 Star
50-40	4 Star
Below 40	5 Star

Climatic Zone - Warm and Humid

EPI(Kwh/sqm/year)	Star Label
85-75	1 Star
75-65	2 Star
65-55	3 Star
55-45	4 Star
Below 45	5 Star

Climatic Zone - Hot and Dry

EPI(Kwh/sqm/year)	Star Label
75-65	1 Star
65-55	2 Star
55-45	3 Star
45-35	4 Star
Below 35	5 Star

The program would rate office buildings on a 1-5 Star scale with 5 Star labeled buildings being the most efficient. Five categories of buildings office buildings, hotels, hospitals, retail malls, and IT Parks in five climate zones in the country have been identified for this programme.

Those buildings having a **connected load of 100 kW** and above would be considered for BEE star rating scheme.

Energy Efficiency Label

for Residential Buildings in India

ome About + FAQs Help Downloads

© 2019. Energy Efficiency Label for Residential Buildings in India. All Rights Reserved.

Home About + FAQs Help Downloads +

B Login 🖬 Signup

Please fill the Feedback form

Thank you !

Presented by:

GIZ and South Cluster Cell

chennai.gizcsbcell@gmail.com