

Two-day Training: Professionals

|Location: Bhubaneswar, Odisha |

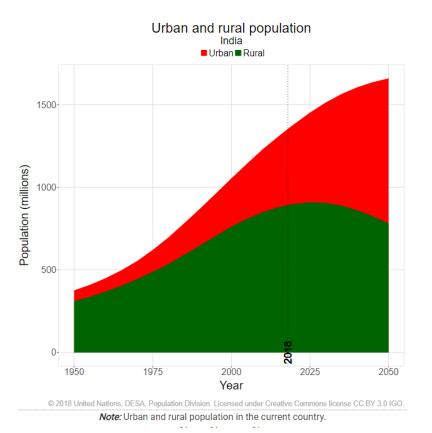
|Date: 9th-10th June,2022 |

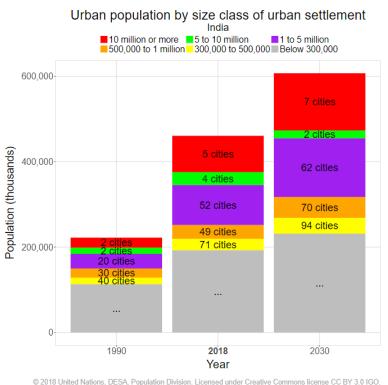
RESILIENT, AFFORDABLE AND COMFORTABLE HOUSING THROUGH NATIONAL ACTION

"Innovative Construction Technologies & Thermal Comfort for Affordable Housing"

DAY 1

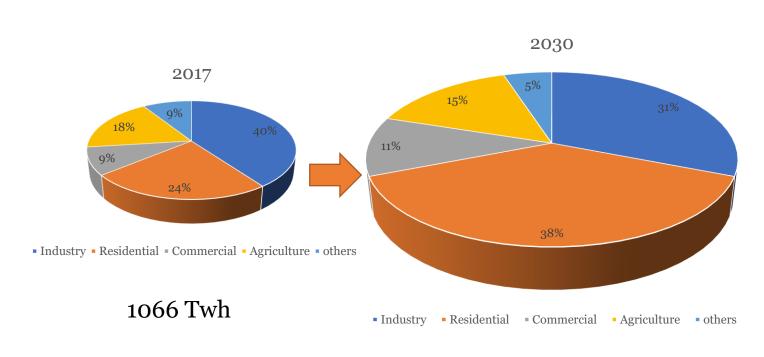
INTRODUCTION





Growing Opportunities with Rapid Urbanization

Cities, which will contribute over 80% to GDP by 2050, need to be Receptive, Innovative, and Productive to foster sustainable growth and ensure a better quality of living

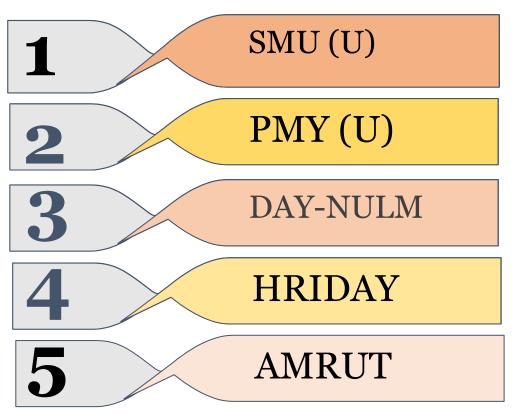


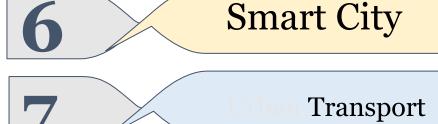
Energy demand with Rapid Urbanization

2239 Twh

Residential Buildings: Fast Growth in Electricity Consumption. *IESS, NITI Aayog

- Residential buildings consumes around 255 TWh electricity in 2017, the electricity consumption in residential buildings is expected to multiply by **more than 3X** and reach around 850 TWh by 2030. Increased penetration of **air-conditioning** / **HVAC** in residential building is the key reason for this growth.
- Residential buildings will become the largest end-user of electricity in the country accounting for 38% of the total electricity consumption.





MoHUA Initiates for Urban Transformation

Flagship Missions under the Ministry of Housing & Urban Affairs (MoHUA) aim to achieve Transformative, Inclusive and Sustainable development through planning, development and reforms for achieving Urban Transformation.

Global Housing Technology Challenge- India (GHTC-India)

MoHUA has initiated the GHTC-India to identify and mainstream a basket of innovative construction technologies from across the globe for the housing construction sector that is sustainable, eco-friendly, and disaster-resilient.

GHTC-India

54 Innovative Construction Technologies Shortlisting

Light House projects with 6 selected technologies

AGARTALA, TRIPURA

Light Gauge Steel Structural System & Pre-Engineered Steel Structural System

CHENNAI, TAMIL NADU

Precast Concrete Construction System-Precast Components Assembled at Site

INDORE, MADHYA PRADESH

Prefabricated Sandwich Panel System

LUCKNOW, UTTAR PRADESH

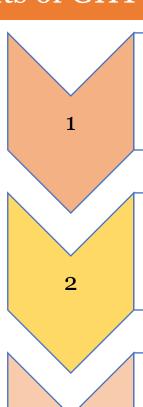
Stay in-place Formwork System

RAJKOT, GUJARAT

Monolithic Concrete Construction System

RANCHI, JHARKHAND

Precast Concrete Construction System-3D Pre-Cast Volumetric



Components of GHTC India

• Grand Expo and Conference on Alternative and Innovative Construction Technologies

• Identifying and Mainstreaming Proven Demonstrable Technologies for the Construction of Light House Projects

• Identifying Potential Future Technologies for Incubation and Acceleration Support through ASHA – India (Affordable sustainable Housing Accelerators)

Affordable Housing in India

Affordable housing, as defined by the National Planning Policy Framework, is housing for sale or rent for those whose needs are not met by the market.

Pradhan Mantri 🐬

Awaas Yojana-Gramin

The provision of affordable housing is a key element of the Government's plan to end the housing crisis, tackle homelessness and provide aspiring homeowners with a step onto the housing ladder

Pradhan Mantri Awas Yojna – Urban

- PMAY-U, launched in 2015, aims to provide houses for homeless. The Government is offering this scheme to all UT's and states. It also offers interest subsidy for Home loans for first time buyers in urban areas
- The residential buildings expected to increase by 2 times in terms of floor area by 2030
- 12 million new affordable homes in Urban areas under PMAY by 2022.

A significant percentage is in the form of high density, multistorey residential blocks

Very low penetration of air conditioning though majority have ceiling fans Ensuring
Thermal
comforts to
occupants
through design
is of prime
importance.

Adequate
Physical and
Social
Infrastructure

All weather housing units with water, kitchen, Electricity & Toilets

PMAY U Features Women Empowerment

Security of Tenure

Better quality of life for Urban Poor's

Pradhan Mantri Awas Yojna – Urban

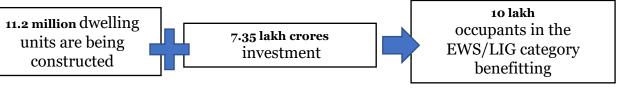
The mission is addressing the affordable housing requirement in Urban areas through following program verticals:

Subsidiary for beneficiary led individual house construction/enhancement. In-Situ Slum Redevelopment (ISSR) for Slums

Affordable housing in partnership with Public & Private Sectors

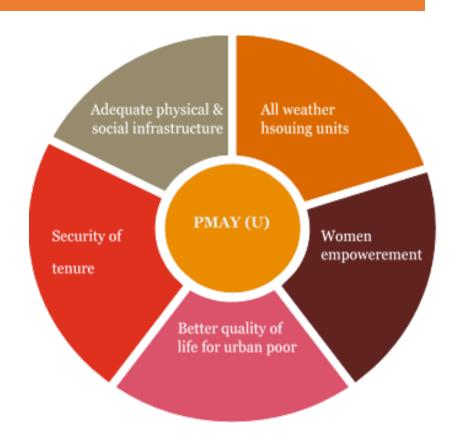
Promotion of Affordable
Housing through Credit linked
subsidy

Slum rehabilitation of Slum dwellers with participation of private developers using Land as a resource



Project Objectives

Pradhan Mantri Awas Yojana - Urban


Construction of affordable housing in Partnership with Public & Private Sectors

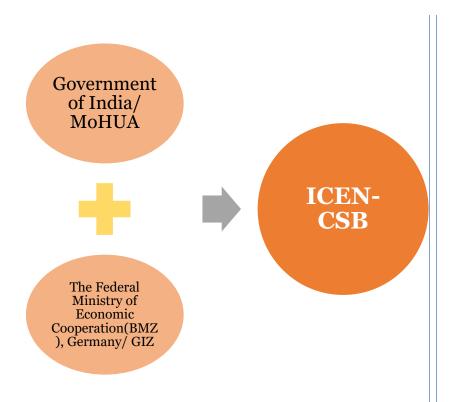
Promotion of affordable Housing through Credit Linked Subsidy

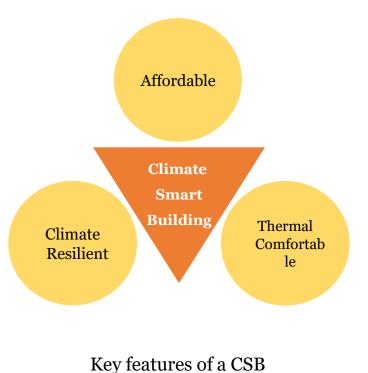
Slum rehabilitation with private developers using land as a resource

Subsidy for beneficiary-led individual house construction/enhancement. (ISSR)

Problems addressed through cafeteria approach by mission

Key features of PMAY-U projects





Climate Smart Buildings Programme (ICEN-CSB)

Reduce the demand for air-condition by 30-40%

Curtail 30 metric tones of CO2

Improve health and wellbeing of people

Support the commitment of GoI towards reducing CO2 emissions

Results of a Climate responsive building design

About the project-"Climate Smart Buildings (CSB): Establishment of the Cluster Cell in Rajkot, Gujarat under Global Housing Technology Challenge-India (GHTC-India)"

Chandigarh	Dadar & Nagar Haveli, Daman & Diu	Gujarat	Haryana	Punjab	Rajasthan

The climate smart building project intends to address the majority of gaps identified in the affordable housing sector

- By introducing of thermal comfort & climate resilience in the Local Government framework through Byelaws as an overarching objective.
- In order to achieve this objective, activities like documentation of LHP construction process from a sustainability perspective, knowledge transfer & capacity building through LHPs, performance monitoring & demonstration of thermal comfort in selected housing projects among others.

Project Objectives

WP1: Facilitate implementation and monitoring of Light House Projects (LHPs)

WP 2: Technical assistance to enhance thermal comfort in upcoming Demonstration Housing Projects (DHPs) and ARHCs (Affordable rental housing complexes) and other Public/Private housing projects in West Cluster

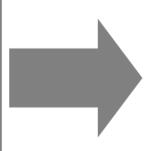
WP 3: Inclusion of climate resilience and thermal comfort requirements in building byelaws and Local Government framework in West Cluster

WP 4: Capacity development of Govt officials and private stakeholders on thermal comfort in the West Cluster

LHP INTRODUCTION

Light House Projects

- The aim of the assignment is to introduce thermal comfort into the foray of affordable housing, a critical design & thus usability aspect which unfortunately has been missing from the current nature of affordable housing in India.
- Although studies & policies like the greening guidelines for PMAY projects, Eco-Niwas Samhita Part-1, Star Labelling of energy efficient homes etc have been around but what the sector really needs is specific, easy to comprehend provisions which can be mandated & enforced in a steadfast way which is exactly what this project intends to do



Light House Projects

Strategic Intent

- Seamless implementation of LHPs
- Assist in knowledge transfer through documentation of technologies used & implementation of LHPs
- Technical assistance to achieve thermal comfort in demonstration projects
- Support the implementation of thermal comfort provision in state legislature
- Capacity buildings around thermal comfort & sustainable construction

Outcome

- Successful model for the implementation & documentation of LHPs
- Databank of technologies, relevant materials in the state analyzed around various relevant parameters
- Replicable models for thermally comfortable affordable houses in Gujarat (climate sensitive to 3 climatic conditions in the state)
- Thermal comfort provisions mandated by the law
- Better grasp of thermal comfort & sustainability in general among the concerned stakeholders & general public too

What are we working on?

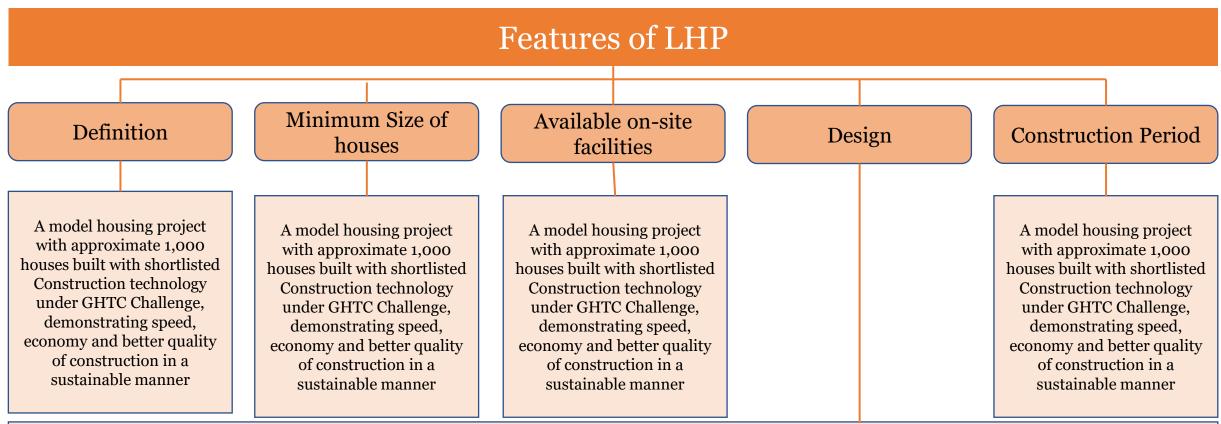
LHPs are model housing projects with houses built with shortlisted alternate technology suitable to the geo-climatic and hazard conditions of the region, an initiative under the Climate Smart Building Programme.

These projects demonstrate and deliver ready to live houses with speed, economy and with better quality of construction in a sustainable manner.

Currently the LHPs' are being implemented in six states (Uttar Pradesh, Gujarat, Madhya Pradesh, Gujarat, Jharkhand, and Tripura) of India under Global Housing Technology Challenge (GHTC) – India. These projects will be made up of modern technology and innovative processes and reduce the construction time and make a more resilient, affordable, and comfortable house for the poor.

Details of LHP Projects along with construction Technology Used

LHP Location	TECHNOLOGY SELECTED	NUMBER OF HOUSES TO BE CONSTRUCTED
Rajkot, Gujarat	Monolithic Concrete Construction using Tunnel Formwork	1144
Indore, Madhya Pradesh	Prefabricated Sandwich Panel System	1024
Chennai, Tamilnadu	Precast Concrete Construction System – Precast Components Assembled at Site	1152
Ranchi, Jharkhand	Precast Concrete Construction System – 3D Volumetric	1008
Agartala, Tripura	Light Gauge Steel Structural System & Pre-engineered Steel Structural System	1000
Lucknow, Uttar Pradesh	PVC Stay in Place Formwork System	1040



- Designed as per the dimensional requirements mandated in the National Building Code (NBC) 2016.
- Design in concurrence with existing centrally sponsored schemes and Missions such as Smart Cities, AMRUT, Swachh Bharat (U), National Urban Livelihood Mission (NULM), Ujjwalla, Ujala, Make in India, etc.
- Structural details designed considering durability and safety requirements of applicable loads including earthquakes and cyclone and flood as applicable confirming to applicable Indian/International standards.
- Design of Cluster involves the possibility of innovative system of water supply, drainage and rainwater harvesting, renewable energy sources with special focus on solar energy.

Construction Methodology of LHP Rajkot

Monolithic Concrete Construction using Tunnel Formwork

Tunnel formwork is a mechanised cellular structure construction system. It is made up of two half shells that are joined to make a room or a cell. An apartment is made up of several cells.

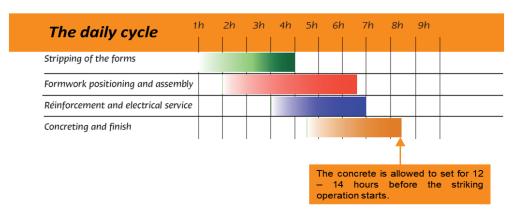
Tunnel forms allow walls and slabs to be cast in one day through several phases to the structure. The programme and the amount of floor area that can be poured in one day define the phasing. The task to be done each day is defined by the 24-Hour cycle. In the morning, the formwork is set up for the day's pour. In the afternoon, the reinforcement and services are installed, and concrete is poured. Concrete for walls and slabs must be poured in one operation once reinforcing has been installed. Early in the morning, the formwork is removed and positioned for the next phase.

The assembly-line approach of the system to construction provides developers and contractors with benefits relating to the certainty of their site schedule, efficient time management and an overall reduction in cost. This enables companies to develop a better quality, monolithic structure that is more acoustically and thermally efficient. The repetitive nature of tunnel form tasks ensures high productivity, and optimum use of labour and these are of considerable benefit to the project manager.

This formwork is manufactured in a completely automated facility in France and there is no manufacturing plant in India.

Construction Methodology – 24 Hour Cycle

1. Stripping of the formwork from previous day


4. Concreting and if necessary, the heating equipment

2. Positioning of the formwork for the current day's phase, with the installation of mechanical, electrical and plumbing services

The implementation of 24-Hour Cycle shall be in accordance with IS 456:2000 – Code of practice for plain and reinforced concrete. However, the structural engineer shall furnish details about the actual process of removal of formwork after casting of concrete

The task to be done each day is defined by the 24-Hour cycle. The overall structure is divided into a number of more or less comparable construction phases, each matching to a day's work, to establish this cycle. The amount of labour and equipment required is then calculated based on the magnitude of these phases. Every day, the phases are similar to achieve optimal efficiency.

3. Installation of reinforcement in walls and slabs

DAY 1

Tea Break

DAY 1

Session 1

01

THERMAL COMFORT

Thermal comfort is a mental state that reflects happiness with the thermal environment and is measured by subjective assessment.

Importance of Thermal Comfort

1. You can increase morale and productivity while also enhancing health and safety by regulating thermal comfort. Because their capacity to make decisions and/or do manual tasks deteriorates in excessively hot and cold conditions, people are more prone to behave unsafely

2

People adjust their behavior to cope with their thermal environment, such as by adding or removing clothing, changing their posture unconsciously, selecting a heating source, moving closer to or farther away from cooling/heating sources, and so on.

3

When this option (removing a jacket or moving away from a heat source) is gone, issues develop since people are no longer able to adjust. People are unable to adapt to their environment in some cases because the environment in which they work is a product of the processes of the task they are doing.

THERMAL ENVIRONMENTS CAN BE DIVIDED LOOSELY INTO THREE BROAD CATEGORIES:

THERMAL COMFORT

Broad satisfaction with the Thermal Environment i.e. most people are neither too hot nor too cold.

THERMAL COMFORT

People start to feel uncomfortable i.e. they are too hot or too cold, but are not made unwell by the conditions.

THERMAL COMFORT

Heat stress or cold stress, is where the thermal environment will cause clearly defined harmful medical conditions, such as dehydration or frost bite

THERMAL DISCOMFORT

Thermal Discomfort can be induced

by a generalized warm or cool discomfort of the body

by an unpleasant chilling or heating of a specific region of the body.

Factors affecting Thermal Comfort

PHYSIOLOGICAL FACTORS

When trying to maintain maximum thermal comfort in a building, are individualized in nature and impossible to manage

PHYSICAL FACTORS

Venus has a beautiful name and is the second planet from the Sun

PHYSICAL FACTORS

•Air Temperature

Floor Surface Temperature

•Mean Radiant Temperature

•Relative Humidity

•Radiant Temperature Asymmetry

•Air Speed

<u>AIR TEMPERATURE – the temperature of the air surrounding a body</u>

The ideal temperature for sedentary work is usually between 20°C and 26°C

Workers who conduct strenuous labor frequently prefer a cooler environment.

When deciding on an indoor temperature, keep the outside temperature in mind.

The temperature within a workplace that is considered "comfortable" is determined by the outside temperature.

<u>RADIANT TEMPERATURE – the heat that radiates from a warm object</u>

Heat can be generated by equipment, which raises the temperature in a specific region.

Heat lamps, spot lighting, skylights, and other heat-producing sources are examples of heat-producing sources.

Even a tiny room with a few workers can see a temperature spike.

PHYSICAL FACTORS

<u>AIR VELOCITY - the speed of air moving across the worker</u>

Because people are sensitive to air movement, air velocity is a major determinant in thermal comfort assessments.

It's best if the air flow rate is between 0.1 and 0.2 m/s.

Little air movement or air that is still or stagnant in indoor environments may cause feelings of fatigue.

It may help to cool workers in a hot setting if the air is colder than the environment, but it may bring further pain to workers in a cool atmosphere.

HUMIDITY – the amount of evaporated water in the air

Humidity in interior spaces varies widely and is influenced by the type of plant utilized, such as those that produce steam.

Air-conditioning can easily attain ideal relative humidity values of 40 percent to 70 percent. On warm or hot humid days, relative humidity in non-air-conditioned workplaces, or where outdoor climatic conditions influence the internal thermal environment, can be more than 70%.

When the humidity is excessively high, it causes discomfort (heavy sweating, weariness, and a sense of 'airlessness,' for example).

PHSYIOLOGICAL FACTORS

CLOTHING LEVEL

METABOLIC RATE

Because it affects heat loss and, as a result, the thermal balance, the amount of thermal insulation worn by a person has a significant impact on thermal comfort. Layers of insulating clothing keep a person warm or cause overheating by preventing heat loss. The better the insulating ability of a garment, the thicker it is in general. Air movement and relative humidity can reduce the insulating effectiveness of clothing, depending on the type of material it is constructed of.

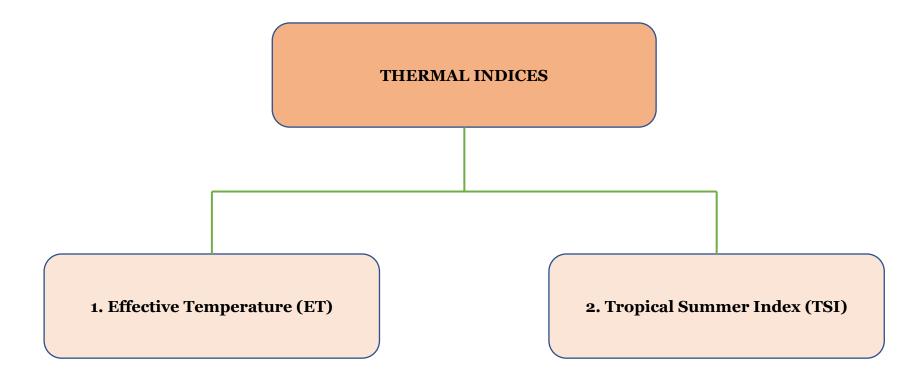
The rate at which chemical energy is converted into heat and mechanical effort by metabolic activities within an organism, commonly measured in units of total body surface area. People have different metabolic rates that can fluctuate due to activity level and environmental conditions.

CLOTHING	Clo
T-shirts, shorts, Light socks, Sandals	0.30
Shirt, Trousers socks, Shoes	0.70
Jacket, Blouse, Long skirt, stockings	1.00
Trousers, Vest, Jacket Coat, Socks Shoes	1.50

CLOTHING LEVELS & INSULATION

ACTIVITY	Met
Seated, Relaxed	1.0
Sedentary Activity (office, dwelling, school, laboratory)	1.2
Standing, Light Activity (shopping, laboratory, light industry)	1.6
Standing, Medium activity (shop assistant, domestic work, machine work)	2.0

METABOLIC RATE



Thermal Comfort Indices

Two of the thermal indices which find applications for hot environments are described as follows.

• 1 - Effective Temperature

- The temperature of still, saturated air at which the same amount of heat is released is known as the effective temperature as well as a general influence on comfort the atmosphere is being investigated.
- Temperature, humidity, and other factors the same thermal output is produced by the same wind velocity. A person's sensations are assumed to have a temperature that is effective.

Initially two scales were developed

Basic Scale

one of which referred to men stripped to the waist and called the basic scale.

Normal Scale of Effective Temperature

The other applies to men fully clad in indoor clothing and called the normal scale of effective temperature. B

The same effective temperature is defined as a combination of temperature, humidity, and wind velocity that produces the same thermal experience in an individual.

The use of globe temperature reading instead of the air temperature reading to make allowance for the radiant heat.

The scale was compiled only for men either seated or engaged in light activity.

CORRECTED EFFECTIVE TEMPERATURE (CET)

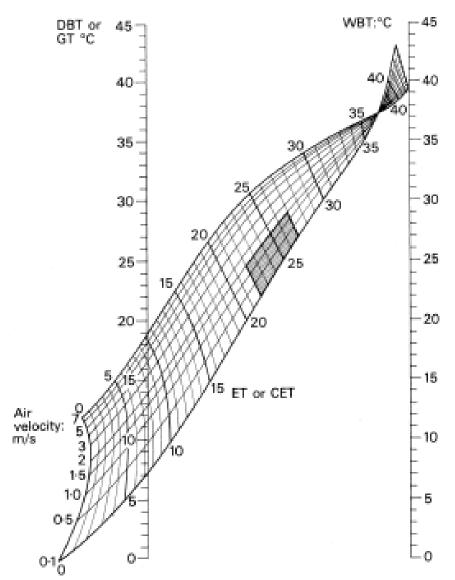


Figure represents the Corrected Effective Temperature (CET) Nomogram

• 2 - Tropical Summer Index

The TSI is defined as the temperature of calm air at 50% relative humidity which imparts the same thermal sensation as the given environment .The 50% level of relative humidity is chosen for this index as it is a reasonable intermediate value for the prevailing humidity conditions.

Mathematically, TSI (°C) is expressed as

$$TSI = 0.308tw + 0.745tg - 2.06\sqrt{V + 0.841}$$

Where,	
Tw	Wet bulb temperature in °C
Tg	Globe temperature in °C
V	Air speed in m/s

The ranges of environmental conditions and TSI covered in this study are:

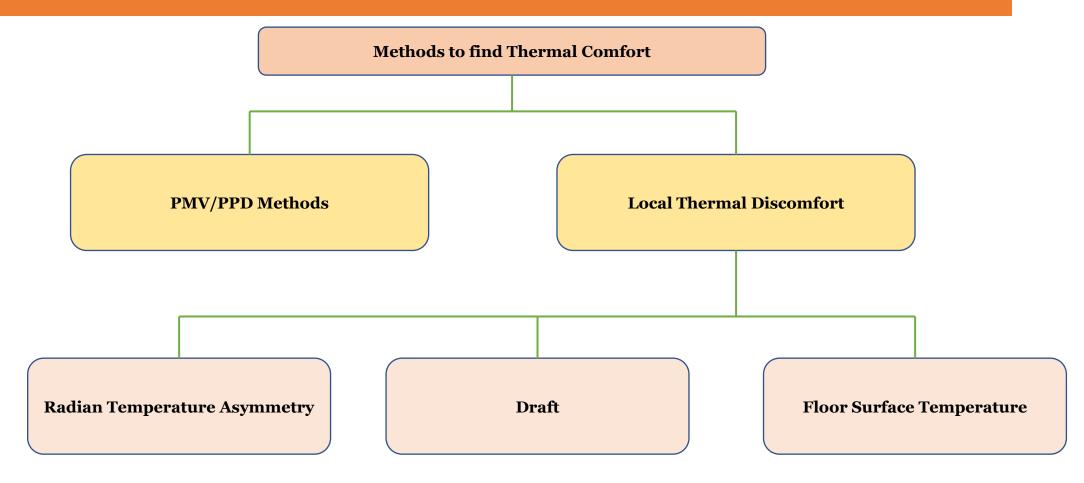
Globe Temperature	20-42 °C
Wet Bulb Temperature	18-30 °C
Air Speed	0-2.5 m/s
TSI	15-40 °C

The thermal comfort of subjects was found to lie between TSI values of 25 and 30°C with optimum conditions at 27.5°C.

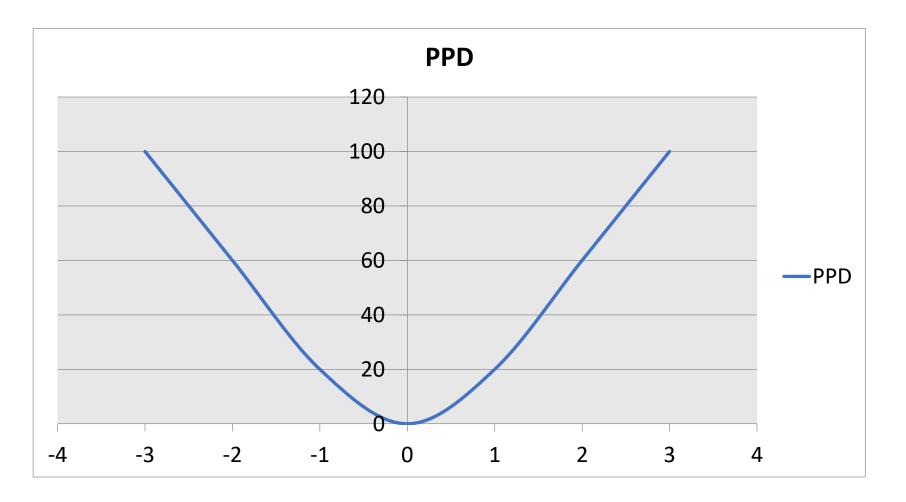
REDUCTION IN TSI VALUE FOR VARIOUS WIND SPEED

Air Speed (m/s)	Decrease in TSI (°C)
0.5	1.4
1.0	2.0
1.5	2.5
2.0	2.8
2.5	3.2

The warmth of the environment was found tolerable between 30 and 34°C (TSI), and too hot above this limit. On the lower side, the coolness of the environment was found tolerable between 19 and 25°C (TSI) and below 19°C (TSI), it was found too cold.

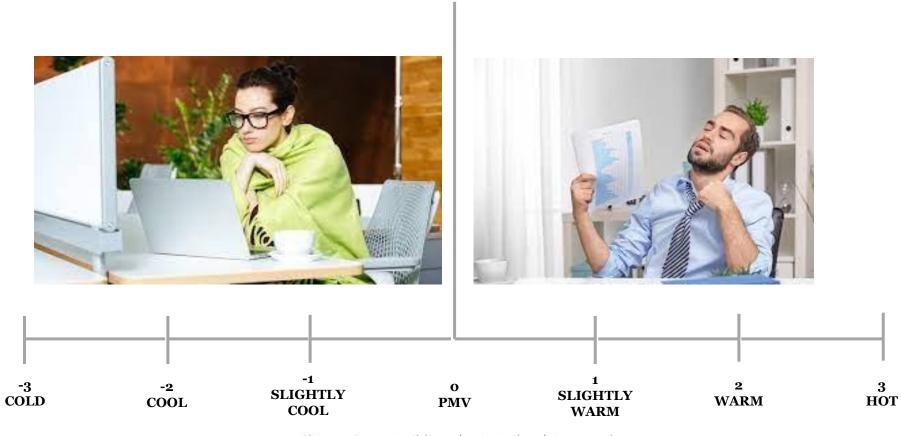


Methods to find Thermal Comfort

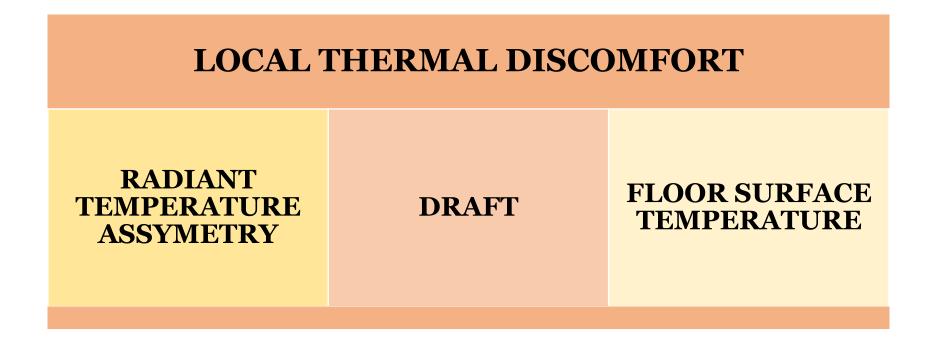


• 1 - PMV/PPD Methods

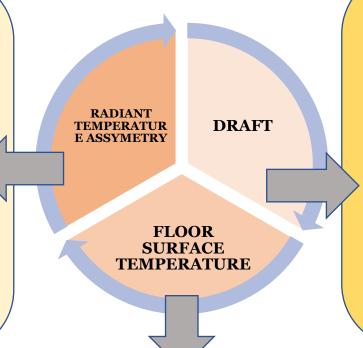
To describe comfort, the PMV/PPD model was constructed utilizing heatbalance equations and empirical investigations on skin temperature. Subjects are asked to rate their thermal comfort on a seven-point scale ranging from cold (-3) to hot (+3) in standard thermal comfort surveys.



The comfort zone is determined by the combinations of the six parameters for which the PMV is within the recommended range (-0.5PMV+0.5), with the PMV equal to zero denoting thermal neutrality. While anticipating a population's thermal feeling is a crucial step in determining what conditions are pleasant, it is more vital to assess whether or not individuals will be satisfied.



It is critical to avoid local thermal discomfort, whether it is produced by a vertical air temperature difference between the feet and the head, an asymmetric radiant field, local convective cooling (draught), or contact with a hot or cold floor. When a person's thermal sensitivity is cooler than neutral, they are more sensitive to local discomfort, and when their body is warmer than neutral, they are less sensitive.



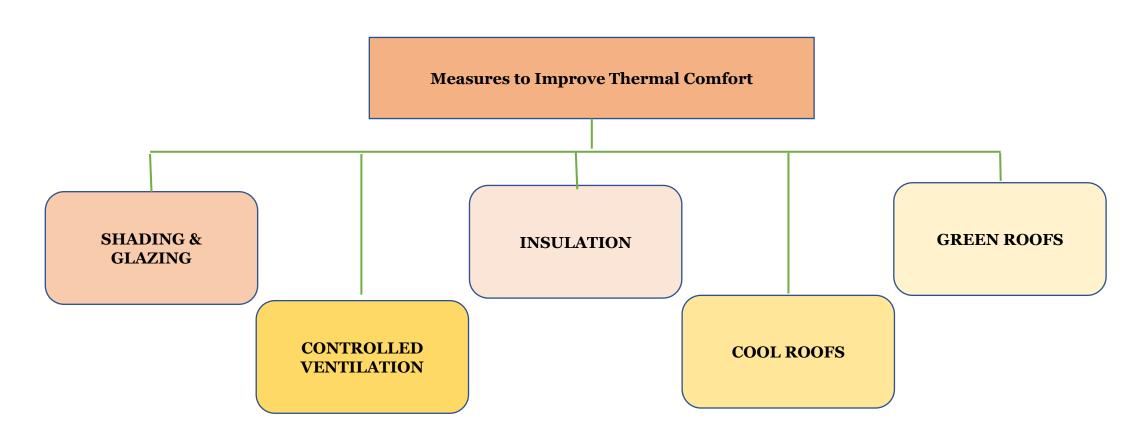
- Large variances in the heat radiation of the surfaces that surround a person might create local discomfort or impair acceptance of the temperature circumstances.
- The temperature disparities across diverse surfaces are limited by ASHRAE Standard 55.
 Because some asymmetries are more sensitive than others, such as a warm ceiling against hot and cold vertical surfaces, the limitations vary depending on which surfaces are involved.
- The ceiling cannot be more than +5 °C (9.0 °F) warmer than the other surfaces, but a wall can be up to +23 °C (41 °F) warmer.

- While air movement can be enjoyable and give pleasure in some situations, it can also be unwelcomed and cause discomfort in others.
- The undesired air movement is known as "draught," and it is most noticeable when the complete body's thermal sense is cool.
- A draught is most likely to be felt on exposed body regions such as the head, neck, shoulders, ankles, feet, and legs, although the sensation is also affected by air speed, air temperature, activity, and clothing.

Depending on the footwear, too hot or too cold floors might be uncomfortable. In rooms where users will be wearing lightweight shoes, ASHRAE 55 advises keeping floor temperatures between 19–29 °C (66–84 °F).

There will always be a percentage dissatisfied occupants. Often it will be the same person, therefore the values should not be added

CATEGORY	PPD (PREDICTED PERCENTAGE DISSATISFIED)	PMV (PREDICTED MEAN VOTE)	DR (DRAUGHT RISK)
	%	-	%
A	< 6	-0.2 < PMV < +0.2	< 10
В	< 10	-0.5 < PMV < +0.5	< 20
С	<15	-0.7 < PMV < +0.7	< 30



Measures to Improve Thermal Comfort

Shading & Glazing

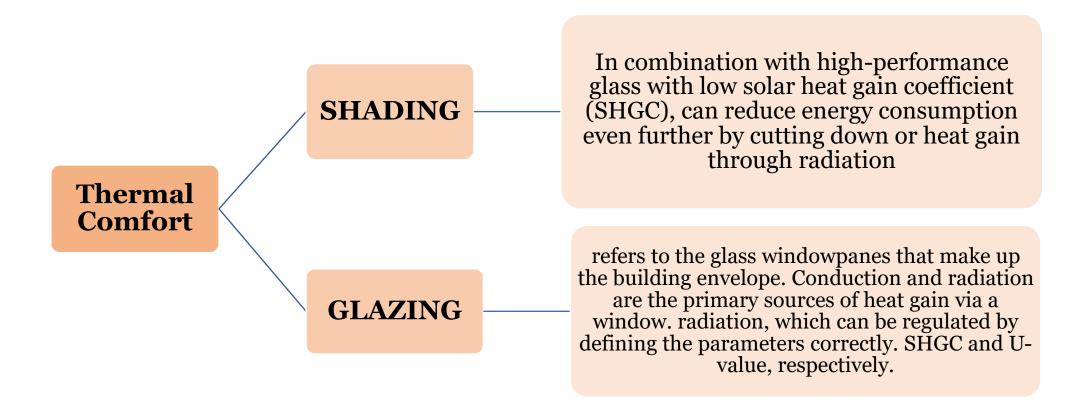
Shading reduces internal heat gain through coincident radiation.

VARIOUS METHODS TO SHADE WINDOWS					
Overhangs	Awnings	Louvers	Vertical Fins	Light Shelves	Natural Vegetation

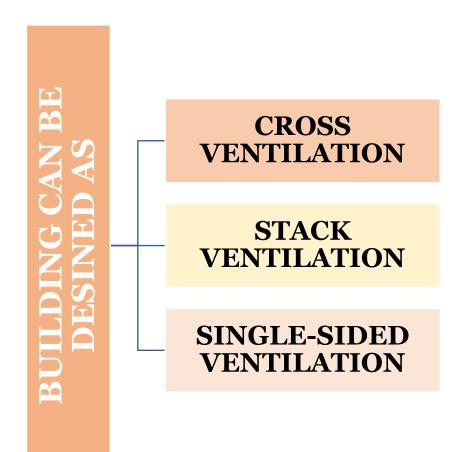
These can reduce cooling energy consumption by 10-20%

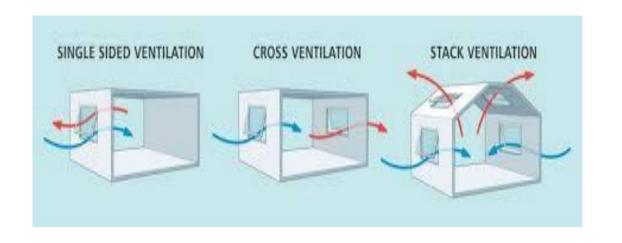
The shading mechanism can be fixed or movable (manually or automatically) for allowing varying levels of shading based on

- 1. the sun's position and
- 2. movement in the sky



Shading & Glazing





Controlled Ventilation

Controlled Ventilation

Designing windows and vents to dissipate warm air and allow the ingress of cool air can reduce cooling energy consumption by 10-30%

Air Velocity range between 0.5 to 1 m/s

Drops temperature at about 3 ^OC at 50% relative Humidity

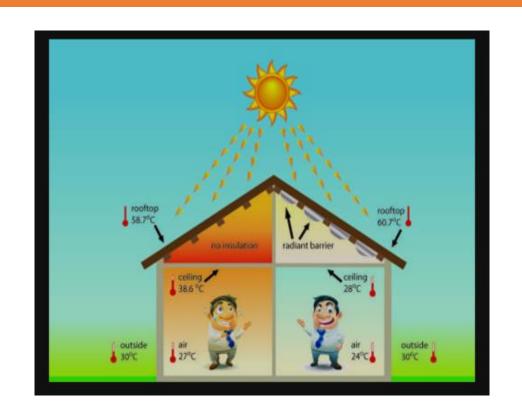
AIR VELOCITY OF 1 m/s			
Office Environment	Too High		
Home Environment	Acceptable (Especially if there is no resource to active air conditioning.)		

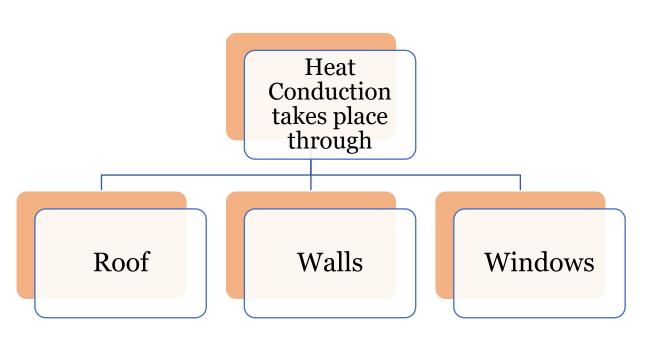
Controlled Ventilation

Natural ventilation takes advantage of the differences in air pressure between warm air and cool air, as well as convection currents, to remove warm air from an indoor space and allow fresh cooler air in.

This also has the added advantage of cooling the walls and roofs of the buildings that hold significant thermal mass, further enhancing the thermal comfort of the occupants

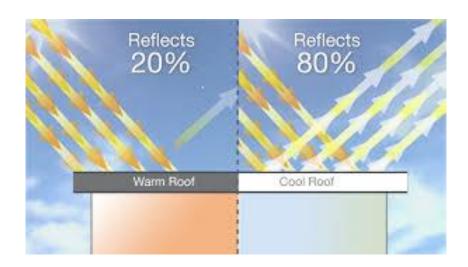
NATURAL V		
With Breeze Air	Works Best	Even in hot-dry and warm-humid climate zones where some air-
Absence of natural breeze Fans can be used to improve the flow of cool air		conditioning may be required during peak Thermal Comfort for All summer, buildings can be designed to operate in a mixed mode to enable
Natural ventilation promotes the temperature, called ad	night ventilation and natural ventilation during cooler seasons	





Insulation

An insulating material can resist heat transfer due to its low thermal conductivity. Insulating walls and the roof can reduce cooling energy loads by up to 8%



Cool Roofs

Cool roofs are one of the passive design options for reducing cooling loads in buildings. Cool roofs reflect most of the sunlight (about 80% on a clear day)

When sunlight is incident on a dark roof	When Sunlight is incident on a cool roof
38% heats the atmosphere	10% heats the environment
52% heats the city air	8% heats the city air
5% is reflected	80% is reflected
	1.5% heats the building

Cool Roofs

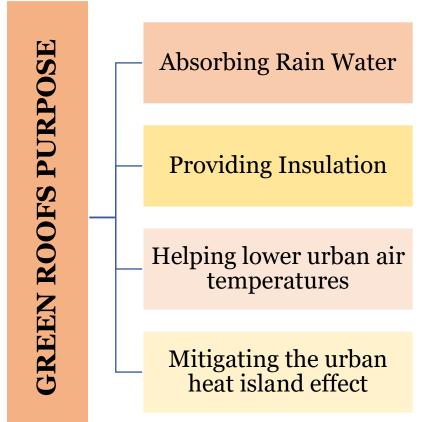
In the summer, a typical cool roof surface temperature keeps 25-35°C cooler than a conventional roof, lowering the internal air temperature by roughly 3-5°C and improving the thermal performance.

The comfort of the inhabitants is improved, and the roof's lifespan is extended.

Cool roofs increase the durability of the roof itself by reducing thermal expansion and contraction.

Apart from helping enhance the thermal comfort in the top floor and helping reduce air-conditioning load, cool or white roof or pavements also offer significant reduction in urban heat island effect

The cities of Jodhpur and Jaipur is the extremely hot state of Rajasthan, where most of the city homes are painted in light blue and light pink colours, are examples of practical application of this age-old traditional design style.



Green Roofs

A green roof is a roof of a building that is partially or completely covered with vegetation

Green Roofs

Reduction in Energy use is an important feature of Green Roofing

During cooler Winter Months Retain their heat During hotter Summer Months Reflecting and absorbing solar radiations

Thermal Comfort in Affordable Housing

70% of the buildings needed in India by 2030 have yet to be constructed. Maintaining the status quo is pointless, and there is a huge opportunity to properly incorporate passive design strategies across our built environment.

Passive solutions for thermal comfort in buildings can greatly reduce cooling, ventilation, and lighting requirements

Less reliance on mechanical cooling/heating approaches reduces the generation of surface ozone, resulting in better air quality

Building techniques that are more sensitive will tend to reduce disparities in thermal comfort between different income classes as more people become aware of the benefits of sustainable building design.

Thermal Comfort in Affordable Housing

Impact of Thermally Comfortable Affordable Housing

Thermal comfort in housing is one of the key pillars to achieve India's National Cooling Action Plan target of reducing cooling energy need by 20-40 per cent by 2037-38.

Overview of affordable housing sector

80 million

households in India are estimated to be living in slums

40 million

current housing shortage in Rural areas 20 million

current housing shortage in Urban areas

70%

housing shortage in Rural areas is mainly in affordable segment Thermal comfort housing can have numerous positive impacts

Lower operational costs for the economically weaker sections

Broader market & outreach for the sustainable material & technology market

Social benefits rising from belter comfort conditions like boost in academic performance of kids, improvement in quality of life of the women

Boost to meet the targets of Paris Agreement & achievement of sustainable development goal specially number 3, 11 & 13

Better health and well being of the occupants

Passive Measures

Climatic Zone Level Temperature, rainfall, wind direction, sun radiation, humidity, and other environmental factors are taken into consideration when designing.

Level of Response

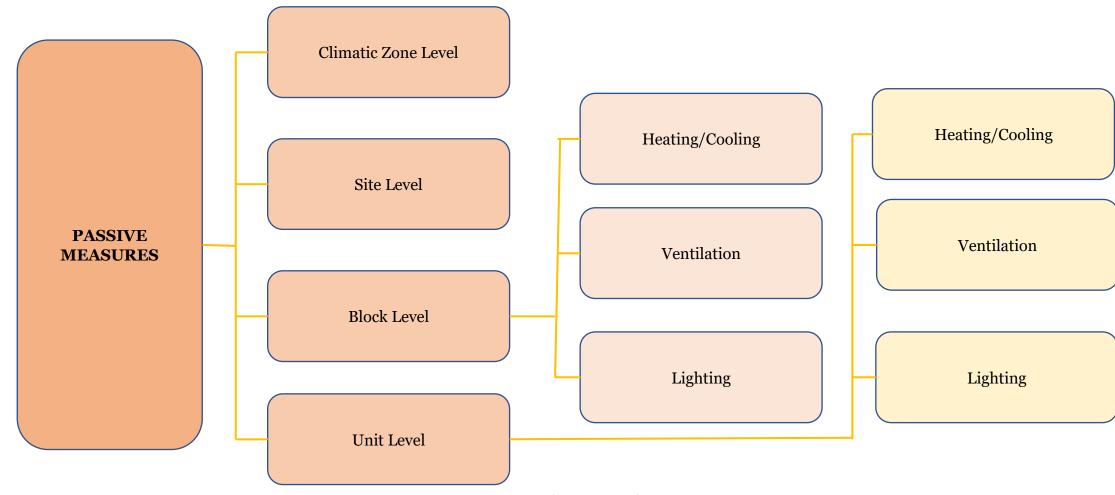
Block Level Interaction of the block with its surroundings and plants to ensure that it has adequate heating, ventilation, and lighting.

Site Level

To take advantage of the positive aspects of the site and its microclimatic features while minimising the negative aspects.

Unit Level

Design solutions that influence heat, light, and ventilation based on climatic variables at the unit level.



Passive Measures – Climatic Zone Level

Vernacular / traditional architectural typologies that respond to the region's distinct environment are best exemplified.

Example

- In Ladakh, earth architecture with thick walls and limited windows provides optimal insulation.
- In Rajasthan, courtyard havelis take advantage of pressure differences and reciprocal shading to provide natural cooling and ventilation.
- In Kerala, sloping roofs are used to guard against severe rains.

Passive Measures – Site Level

Reducing the 'heat island' effect with approaches like:

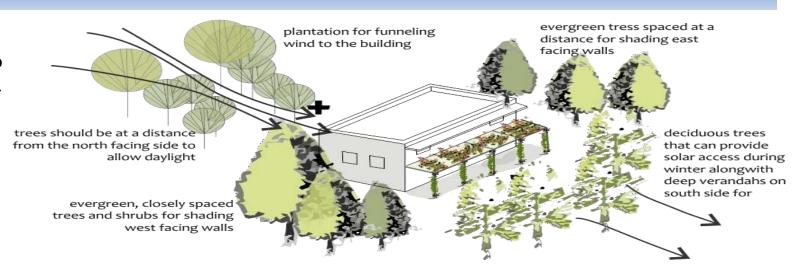
Courtyards / open courts are often surrounded by construction.

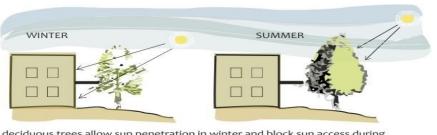
Taking advantage of block mutual shading

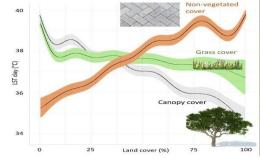
Using site massing to create wind passageways

lowering the amount of hard paving to allow for water absorption

Using complementary vegetation to manage the amount of sunlight that gets through as the seasons change

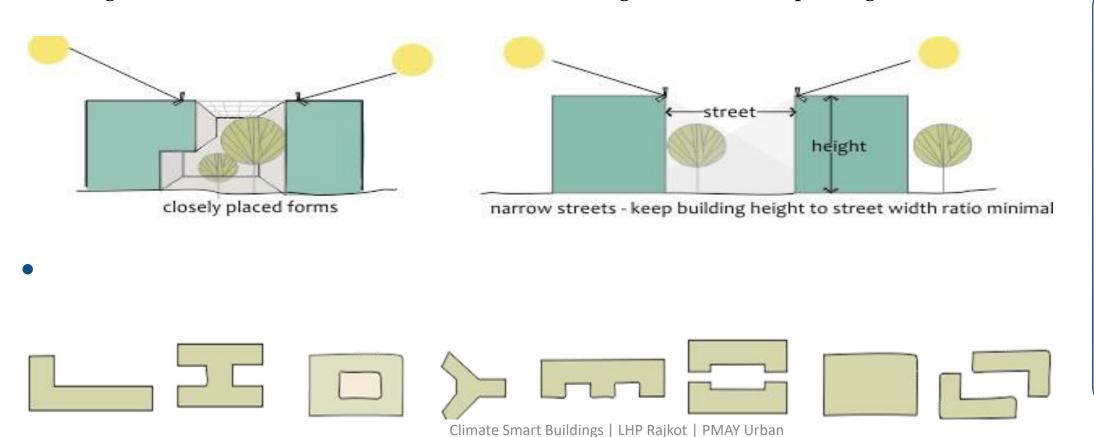





Passive Measures – Leveraging Plantation

Planting trees in the right places to provide shade and ventilation can significantly reduce the severity of intense weather. During heatwaves in Adelaide, a research found that districts with more vegetation cover remained cooler by up to 6°C.

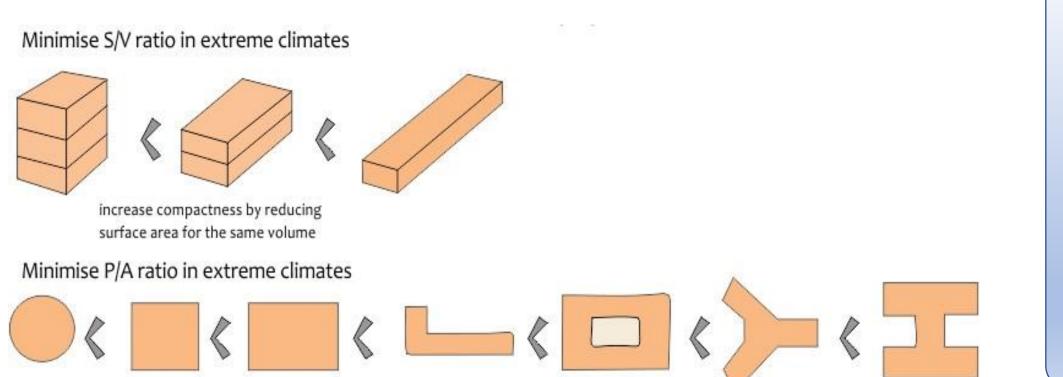
deciduous trees allow sun penetration in winter and block sun access during summer



Block Level

Arrange the blocks so that mutual shade is obtained, avoiding solar heat buildup throughout the summer.

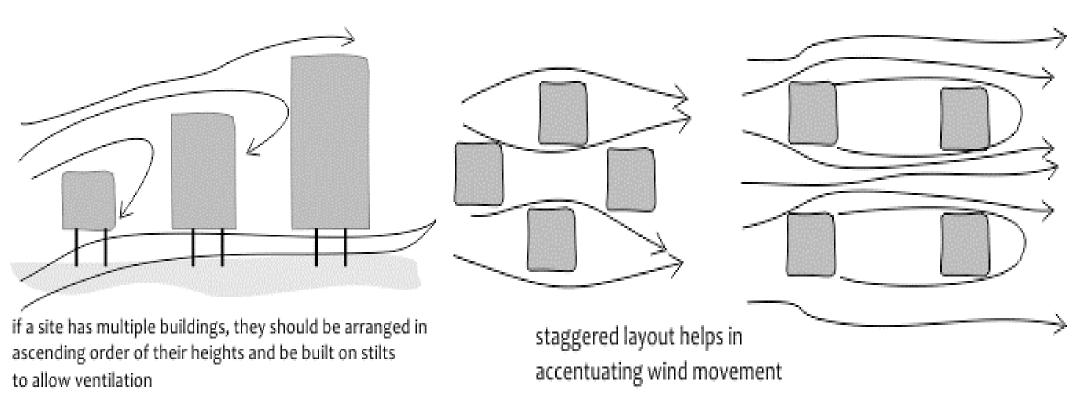
HEATING/ COOLING



Block Level

In harsh climate zones, reduce the surface area to building volume and perimeter to area ratios to reduce solar radiation exposure.

HEATING/ COOLING

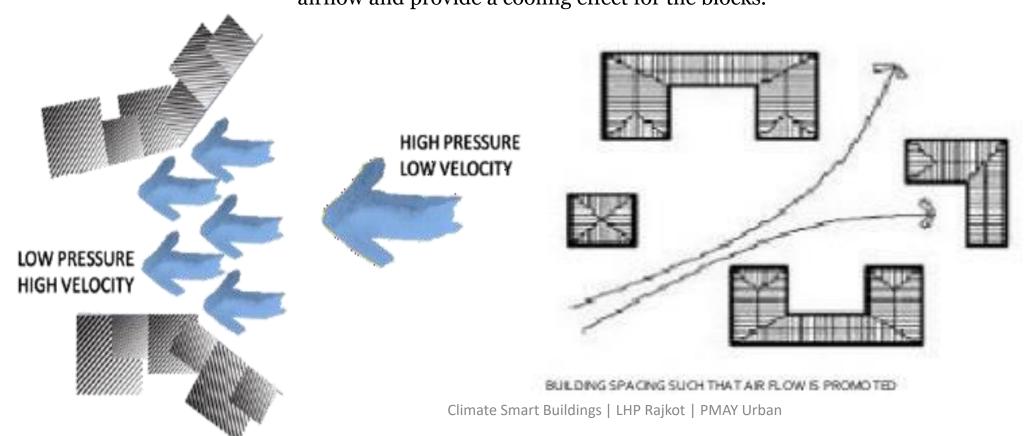


Block Level

Wind shadows should be avoided by building orientation.

VENTILAT ION

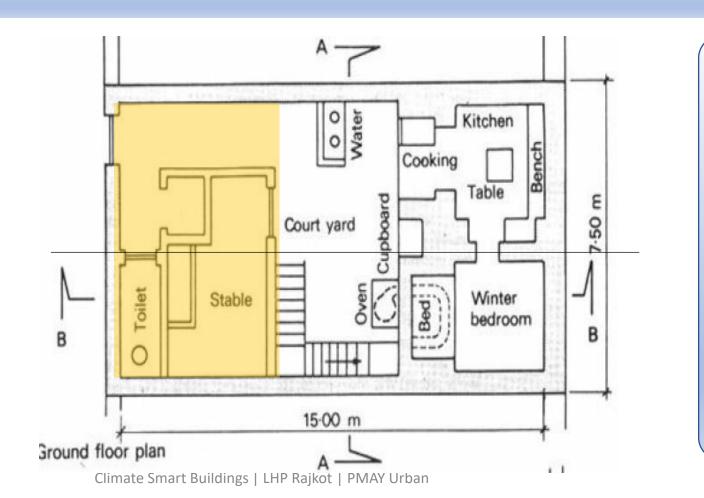
Climate Smart Buildings | LHP Rajkot | PMAY Urban



Block Level

Wind flows can be harnessed by constructing courts and catchment zones of various sizes. This can help to improve airflow and provide a cooling effect for the blocks.

VENTILAT ION


Unit Level

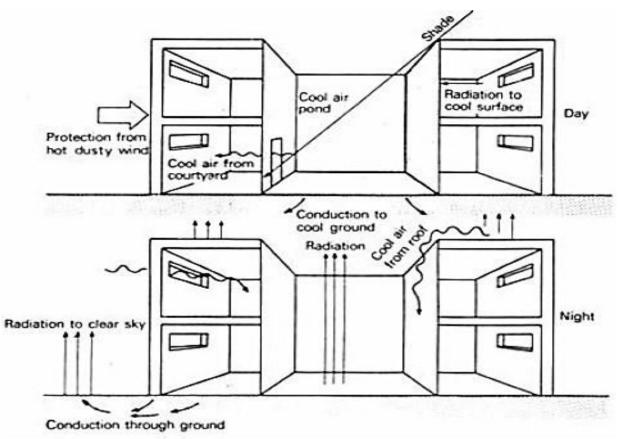
FORMS AND ORIENTATION:

Sun radiation penetration patterns and, as a result, heat uptake and loss in a building are affected by changes in solar route during different seasons.

Internal layout is of the courtyard type, which is rather compact. Reduced sun exposure on East-West external walls to reduce heat gain.

If planned and situated on the east and, especially, the west end of the structure, non-habitable rooms (stores, bathrooms, etc.) can be efficient thermal barriers.

HEATING/ COOLING



Unit Level

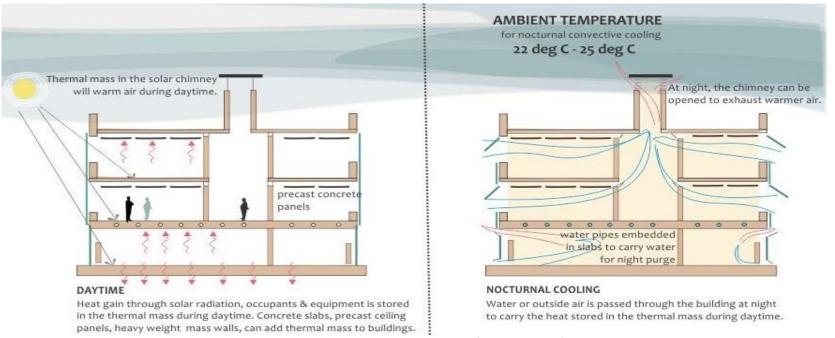
FORMS AND ORIENTATION:

High walls block the sun, resulting in significant portions of the inner surfaces and courtyard floor being shaded during the day.

The dirt beneath the courtyard will extract heat from the surrounding places and remit it to the open sky during the night, resulting in cooler air and surfaces.

HEATING/ COOLING

Climate Smart Buildings | LHP Rajkot | PMAY Urban



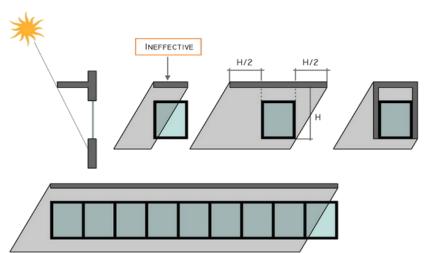
Unit Level

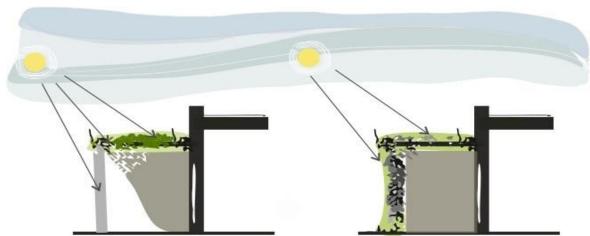
THERMAL MASS:

Thermal mass can be combined with night-time convective cooling, sometimes known as "night cooling," to passively cool buildings. Thermal mass as a passive cooling and heating approach requires a large diurnal swing.

HEATING/ COOLING

Climate Smart Buildings | LHP Rajkot | PMAY Urban




Unit Level

SHADING:

Shade-producing plants, such as creepers, can be used.

Fenestrations and shades/chajjas can be built to maximise solar radiation depending on the environment.

HEATING/ COOLING

Unit Level

ORIENTATION:

Buildings can be orientated in relation to the prevailing wind direction at angles ranging from 0° to 30°.

In buildings with a courtyard, positioning the courtyard 45 degrees from the prevailing wind maximises wind flow into the courtyard and improves cross ventilation in the building (in climates where cooling is required).

CREATING PRESSURE DIFFERENCES:

A 'squeeze point' occurs when wind enters through a smaller opening and escapes through a larger opening.

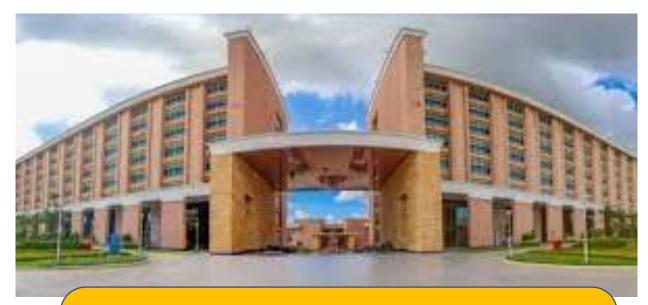
This generates a natural vacuum, which speeds up the wind.

The total area of apertures should be at least 30% of the total floor space.

The window-to-wall-ratio (WWR) should not exceed 60%.

VENTILATION

CASE STUDIES



INFOSYS – POCHARAM CAMPUS

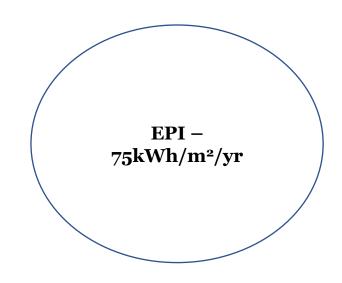
LOCATION	HYDERABAD, TELANGANA
COORDINATES	17° N, 78° E
OCCUPANCY TYPE	OFFICE
TYPOLOGY	NEW CONSTRUCTION
CLIMATE TYPE	HOT AND DRY
PROJECT AREA	27,870 m²

Given the high-standards in terms of building design achieved at the SDB1 in Hyderabad, it has now been showcased in the 'Best Practices Guide for High Performance Indian Office Buildings' by Lawrence Berkeley National Lab, a U.S. Department of Energy (DoE) National Laboratory.

- The Indian Green Building Council (IGBC) has given Infosys, a worldwide consulting and technology firm, the LEED (Leadership in Energy and Environmental Design) India 'Platinum' designation for its Software Development Block 1 (SDB 1) at its Pocharam site in Hyderabad, India.
- The SDB 1 is the first commercial building in India to deploy unique Radiant-cooling technology, setting new norms for energy efficiency in building systems design.

It has been built keeping in mind a holistic approach to sustainability in five key areas

SUSTAINABLE SITE DEVELOPMENT


ENERGY

EFFICIENCY

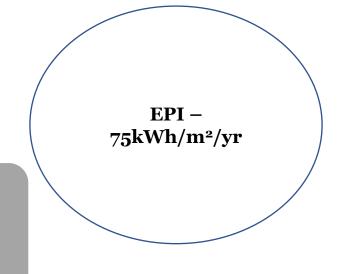
MATERIALS SELECTION

WATER SAVINGS

INDOOR ENVIRONMEN T QUALITY

GODREJ PLANT 13 ANNEXE

LOCATION	MUMBAI, MAHARASHTRA
COORDINATES	19° N, 73° E
OCCUPANCY TYPE	OFFICE – PRIVATE
TYPOLOGY	NEW CONSTRUCTION
CLIMATE TYPE	WARM AND HUMID
PROJECT AREA	24,443 m²



GODREJ PLANT 13 ANNEXE

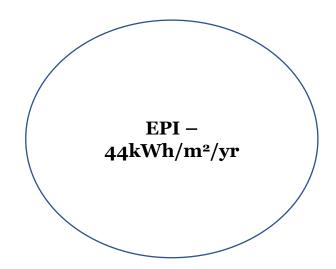
The Plant 13 Annexe Building at Godrej & Boyce (G&B) in Mumbai has been designated as India's first CII-IGBC accredited Net Zero Energy Building. The structure is a mixed-use office/convention center (with office spaces, conference and meeting rooms, auditoriums (90 to 250 seats), banquet hall, 300-person eating facilities, and an industrial kitchen), making certification extremely difficult.

In 2015, the building received an IGBC Platinum grade in the EB (Existing Building) category, which was recertified in 2019. In 2016, it was also awarded the BEE 5 Star Rating. In 2019, he received the 'Energy Performance Award' for meticulous energy measuring and monitoring. At the CII National Energy Management Award event in 2020, it was named "Excellent Energy Efficient Unit."

INDIRA PARYAVARAN BHAWAN, MoEF

LOCATION	NEW DELHI
COORDINATES	29° N, 77° E
OCCUPANCY TYPE	OFFICE & EDUCATIONAL
TYPOLOGY	NEW CONSTRUCTION
CLIMATE TYPE	COMPOSITE
PROJECT AREA	9565 m²

The Indira Paryavaran Bhawan is now India's most environmentally friendly structure. GRIHA 5 Star and LEED Platinum certifications were awarded to the project. The structure has already received accolades, including the MNRE's Adarsh/GRIHA Award for Outstanding Integration of Renewable Energy Technologies.



The new office building for the Ministry of Environment and Forest (MoEF), Indira Paryavaran Bhawan, is a significant departure from traditional architectural design

To reach net zero criterion, several energy saving measures were implemented to lower the building's energy loads, with the residual demand being satisfied by producing energy from on-site installed high efficiency solar panels.

The project team focused on measures for lowering energy demand, such as ample natural light, shade, landscape to reduce ambient temperature, and energy-efficient active building technologies

When compared to a conventional building, Indira Paryavaran Bhawan utilizes 70% less energy. The project used green building principles, such as water conservation and optimization through site waste water recycling.

Renewable Energy Integration 930 kW PV panels with a total area of 4650m² for onsite generation, tilted at 23° facing south to generate equivalent to 70kWh/m²/yr

JAQUAR HEADQUARTERS

LOCATION MANESAR HARYA	
COORDINATES	28° N, 77° E
OCCUPANCY TYPE	CORPORATE AND MANUFACTURING
TYPOLOGY	NEW CONSTRUCTION
CLIMATE TYPE	COMPOSITE
PROJECT AREA	48000 m ²

JAQUAR HEADQUARTERS

The building is a perfect blend of modern design sensibilities, biophilic inspiration, and a brand ambition of soaring high.

The Jaguar Headquarters in Manesar is not only a stunning structure, but also a painstakingly constructed complex with cutting-edge technology that has resulted in a net zero campus with a LEED Platinum (USGBC) rating. This project is known for its complex organic design and space arrangement, making it a visual pleasure.

Through its characteristic wing-shaped architecture, the design redefines a business workplace by giving it a memorable experience. The spreading wings of a symbolic eagle, poised to take flight, are atop the horizontal glass edifice, suggesting a firm with worldwide ambitions.

ST. ANDREWS BOYS HOSTEL BLOCK, GURUGRAM

LOCATION	GURUGRAM HARYANA
COORDINATES	28° N, 76° E
OCCUPANCY TYPE	HOSTEL
TYPOLOGY	NEW CONSTRUCTION
CLIMATE TYPE	HOT AND DRY
PROJECT AREA	5574 m²

ST. ANDREWS BOYS HOSTEL BLOCK, GURUGRAM

The goal of the design process was to increase student interaction within the indoor areas, which then spilled outdoors and interacted with the surrounding landscape.

On the south and north facades, the linear block was twisted to create a shaded entry (summer court) and an open terrace (winter court), respectively, to stimulate activities at all times of the day and season. The ramp serves as a buffer between the hot outdoors and the cooler interior, preventing kids from experiencing heat shock.

ST. ANDREWS GIRLS HOSTEL BLOCK, GURUGRAM

LOCATION	GURUGRAM HARYANA
COORDINATES	28° N, 76° E
OCCUPANCY TYPE	HOSTEL
TYPOLOGY	NEW CONSTRUCTION
CLIMATE TYPE	HOT AND DRY
PROJECT AREA	2322 m²

ST. ANDREWS GIRLS HOSTEL BLOCK, GURUGRAM

Indoor and outdoor spaces that connect physically and aesthetically at different levels to encourage interactions and social activities are incorporated into the building's plan.

The entrance foyer and lobby were planned as outdoor spaces facing west and connected to the pantry so that students can enjoy their nights outside with a spill-out into the green landscape.

AKSHAY URJA BHAWAN HAREDA

LOCATION	PANCHKULA HARYANA
COORDINATES	30° N, 76° E
OCCUPANCY TYPE	OFFICE - PUBLIC
TYPOLOGY	NEW CONSTRUCTION
CLIMATE TYPE	COMPOSITE
PROJECT AREA	5100 m ²

AKSHAY URJA BHAWAN HAREDA

Mechanical air conditioning is used to guarantee thermal comfort in apical zones at all times.

Zones are created based on the intended temperature set points. 25 1 °C for apex offices, 25 3 °C for regulated office and public areas, and 25 5 °C for passive zones.

In the summer, controlled zones are cooled, and in the monsoon, they are chilled. In the summer, passive zones are cooled, while in the monsoon, they are aired. The centre atrium has a mist system for cooling the controlled and passive zones. Water that has been chilled to a temperature of 15°C.

SUN CARRIER OMEGA

LOCATION	BHOPAL M.P.	
COORDINATES	23° N, 77° E	
OCCUPANCY TYPE	OFFICE – PRIVATE	
TYPOLOGY	NEW CONSTRUCTION	
CLIMATE TYPE	HOT AND DRY	
PROJECT AREA	9888 ft²	

GRIDCO BHUBANESWAR

LOCATION	BHUBANESWAR.	
COORDINATES	20° N, 85° E	
OCCUPANCY TYPE	OFFICE	
TYPOLOGY	NEW CONSTRUCTION	
CLIMATE TYPE	WARM AND HUMID	
PROJECT AREA	15,793.5 m ²	

GRIDCO BHUBANESWAR

The structure was created using computer simulation to determine how long direct sunshine or radiation was tolerable for human habitat based on the sun-path of Bhubaneswar.

The structure encourages natural light and screen radiation. It would feature photovoltaic glass panels and geothermal cooling systems strategically placed, as well as indigenous solar producing technologies, to ensure that it is self-sustaining.

Rainwater can be collected, purified, and utilised as drinkable water. Grey water that has been treated can be reused for flushing and landscape irrigation.

Live Exercise

DAY 1

Lunch Break

DAY 1

Session 2

02-A

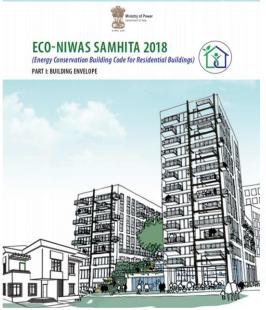
THERMAL COMFORT

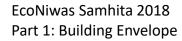
STANDARDS

Thermal Comfort Standards

ASHRAE - 55

National Building Code - 2016


Handbook of Functional Requirements of Buildings 1987 by BIS



Eco Niwas Samhita Part 1 and Part 2

ISHRAE – Indoor Environmental Quality Standards 2018-19

EcoNiwas Samhita 2021
Code Compliance and Part 2

ASHRAE 55

Meeting the standards for Thermal Comfort

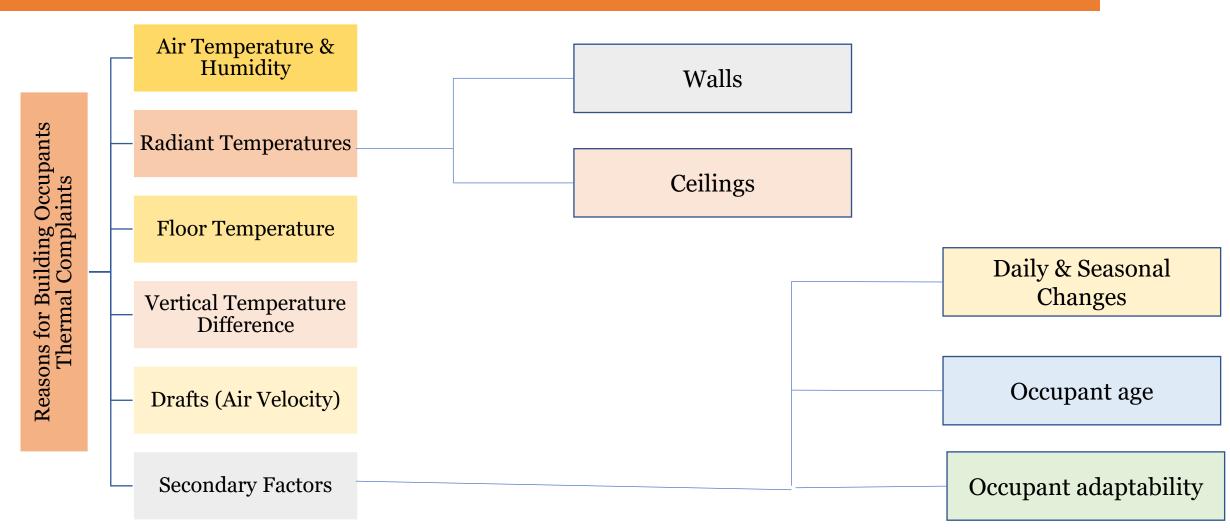
ASHRAE standard 55, Thermal Environmental condition for Human Occupancy

ISO 7726:1998

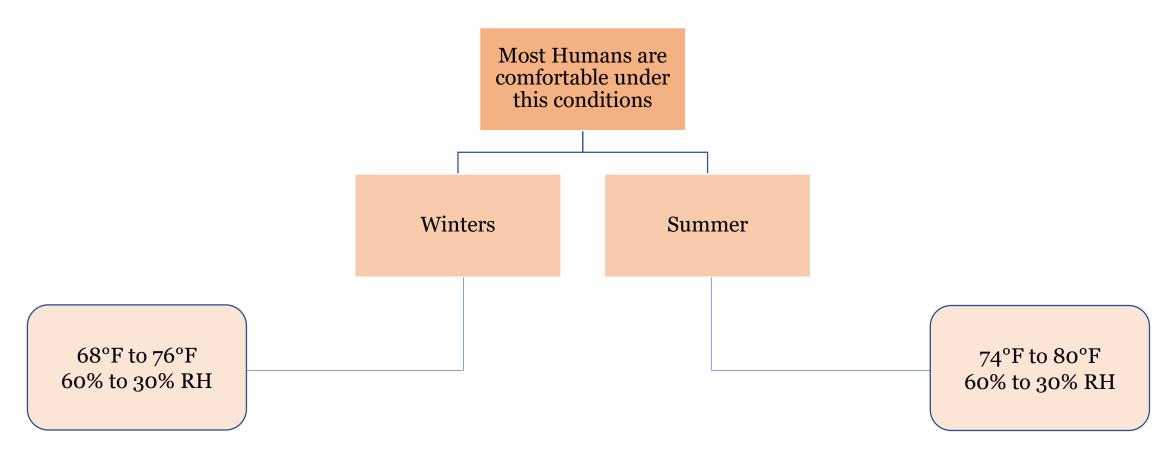
Ergonomics of the Thermal Environment – Instruments for measuring Physical quantities

ISO 7730:1994

Moderate Thermal Environments – Determination of the PMV and PPD Indices and specification of the conditions for Thermal Comfort

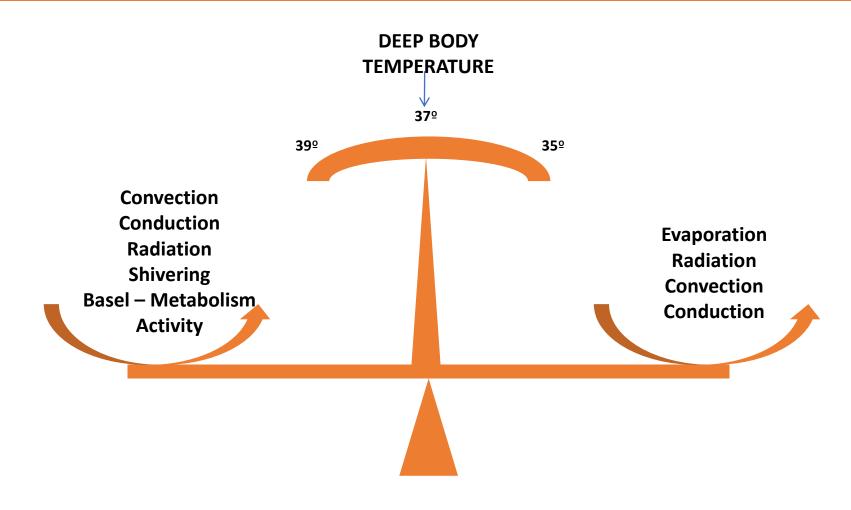


ASHRAE 55



ASHRAE 55

Human Comfort Range



Body Regularity Mechanism

Body Regularity Mechanism

The Thermal balance of the body can be shown by following equation, if the heat gain and lost factors are

	Met = Metabolism (basel and muscular)
Gain	Cnd = Conduction (contact with warm bodies)
	Cnv = Convection (if the air is warmer than skin)
	Red -= Radiation (from the sun, the sky and hot bodies)
	Cnd = Conduction (contact with cold bodies)
Logg	Cnv = Convection (if the air is cooler than the skin)
Loss	Red = Radiation (to night sky and cold surface)
	Evp = Evaporation (of moisture and sweat)

Then Thermal Balance exist when:

$$Met - Evp + Cnd + Cnv + Red = o$$

Body Thermal Balance

The body generates heat on a constant basis. The majority of the metabolic processes involved, such as tissue formation, energy conversion, and muscular effort, are all exothermic. Food ingestion and digestion provide the energy required, and metabolism refers to the process of converting food into living matter and usable energy.

METABOLIC HEAT PRODUCTION

BASEL METABOLISM

Heat Production of Vegetative, automatic process

MUSCULAR METABOLISM Heat Production due to consciously controlled work

Body Thermal Balance

- Only 20% of the heat generated in the body is used, thus any excess heat must be evacuated.
- The mechanism by which the human body maintains its core internal temperature is known as thermoregulation.
- Homeostasis is the state of having a constant internal temperature. All thermoregulation systems aim to bring the body back to a state of homeostasis.
- The temperature range for a healthy safe temperature is between 98.6° F (37°C) and 100° F (37.8°C). The temperature on your skin is between 31° and 34°.

HUMAN BODY RELEASES HEAT TO THE ENVIRONMENT BY

EVAPORATION

RADIATION

CONVECTION

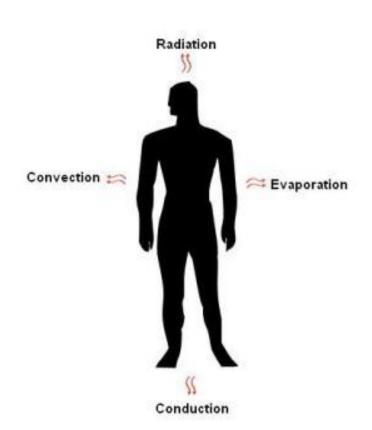
CONDUCTION

Body Thermal Balance – Heat Loss by Human Body

CONVECTION

- The heat from the body is transferred to the air in contact with the skin or clothing, which rises and is replaced by cooler air.
- Faster air movement, lower temperature, and a higher skin temperature all enhance the rate of convective heat loss.

RADIATION

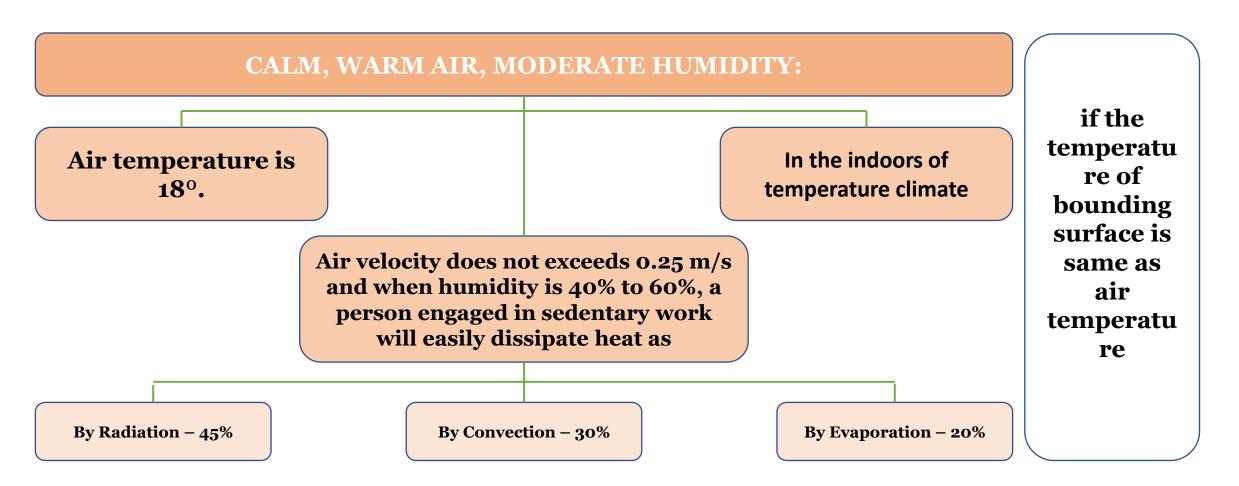

• The temperature of the body surface and the temperature of the opposing surface affects radiant heat loss.

CONDUCTION

• It is determined by the temperature difference between the body surface and the object with which the body is in direct touch.

EVAPORATION

- Is determined by evaporation rate, which is influenced by air humidity (the dryer the air, the faster the evaporation) and the amount of moisture available for evaporation.
- Perspiration and sweating cause evaporation, as does breathing in the lungs.



Body Thermal Balance – Heat Loss in Various Thermal Environment

Body Thermal Balance – Heat Loss in Various Thermal Environment

HOT AIR AND CONSIDERABLE RADIATION

The Human body temperature is 37°. But skin temperature is 31-34°. Body can gain substantial heat by radiation: Sun, radiator, bonfire.

Even if heat loss is small in the above scenario, evaporation can still occur if the air is suitably dry.

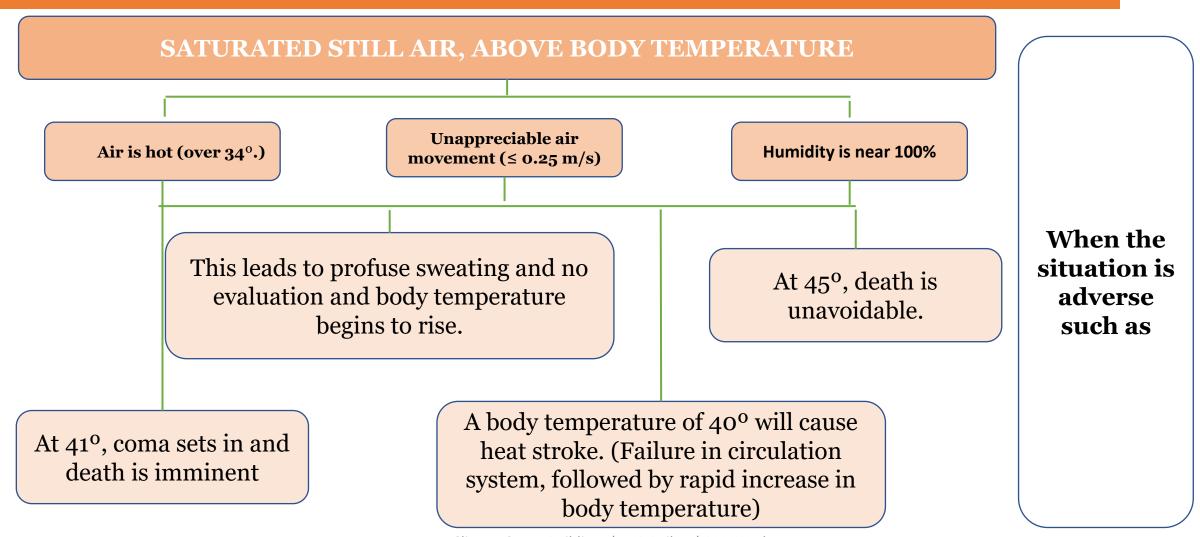
Heat loss via convection steadily declines as air temperature approaches skin temperature, and the body performs vasomotor adjustments to raise temperature to the higher limit (34°), but once the air temperature hits this point, there is no more heat loss by convection.

Body Thermal Balance – Heat Loss in Various Thermal Environment

HOT AIR, RADIATION AND APPRECIABLE AIR MOVEMENT

When the air is hot (equal to or above skin temperature), the surrounding objects are hot (no heat loss by radiation), and when the air is humid (less than 100% RH), air movement will speed up evaporation, even though the air temperature is higher than skin temperature. Moving air constantly replaces saturated air in the surrounding area.

Inadequately planned houses can generate a lethal condition in which the air is entirely saturated, there is no air flow, and the air is warmer than the skin, resulting in heat stroke.



Body Thermal Balance – Heat Loss in Various Thermal Environment

Climate Smart Buildings | LHP Rajkot | PMAY Urban

Measurements of Thermal Comfort

- Developed in parallel with ASHRAE 55
- Evaluate and measure the moderate Thermal Environment
- Extreme Environments
 - ✓ ISO 7243:2017
 - ✓ ISO 7933: 2004
 - ✓ ISO/TR 11079:1993

BS EN ISO 7730

Ergonomics of the Thermal Environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local Thermal comfort criteria

BS EN ISO 7726

Ergonomics of the Thermal Environment - Instruments for measuring Physical quantities

General Requirements & Standard Conditions of ASHRAE 55

The standards and conditions that must be completed in order to comply with ASHRAE 55 are defined in sections 4 and 5. The criterion must be applied to the specific space being evaluated, the inhabitants who will be inhabiting the area, locations within that space if not the entire space, and any outlier occupants, according to general requirements (i.e., children, disabled persons, elderly persons, etc.).

Because satisfying everyone in a given place is impossible owing to unknown differences, the mandatory requirements that must be met to comply with ASHRAE standard 55 exist in a range of values (physiologically and psychologically). As a result, ASHRAE 55 specifies a certain percentage of occupants as acceptable, as well as the thermal environment values associated with that number.

Compliance with ASHRAE Standard 55

The comfort zone is regarded sufficient if at least 80% of its occupants are unlikely to object to the ambient state, implying that the majority are between -0.5 and 0.5 on the PMV scale.

Design conditions must maintain the spatial conditions within the acceptable range using one of the methodologies outlined in section 5 of the standard for building systems to comply with ASHRAE, including

natural ventilation systems

mechanical ventilation systems

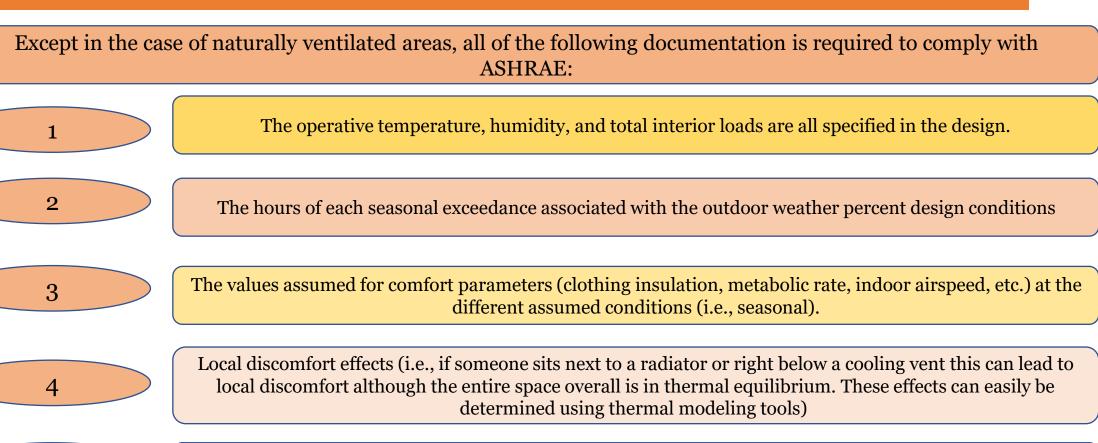
combinations of these systems

control systems

thermal envelopes

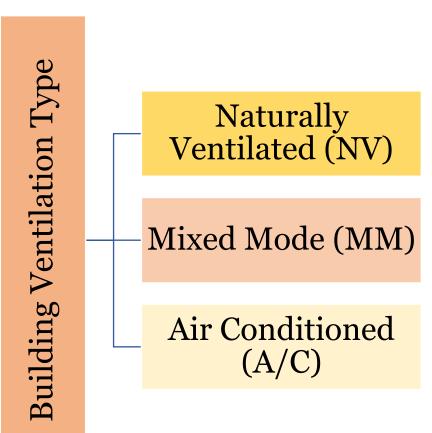
They must also account for all expected conditions (summer and winter, although barring extremes), external and internal environmental elements, and any essential documents.

5



Needed Thermal Comfort Compliance Documentation

The system input or output capacity needed to attain the design operative thermal conditions.



- The adaptive thermal comfort model saves more energy in buildings that are naturally ventilated when compared to air-conditioned buildings as residents adjust to wider indoor temperatures than the peripheral thermal comfort zones determined by the PMV model.
- IMAC Classifies the Building Ventilation into three types based on their HVAC system ranging from naturally ventilated to complete Air Conditioning

• The Standard Classification is based on the ADAPTIVE Thermal Comfort model which differentiate the thermal tolerance of occupants accustomed to monotonic temperature (such as air conditioned places) and people habituated to variation in internal temperatures (such as naturally ventilated structures)

• The Indoor operative temperature values for different building types (NV, MM & A/C) are Pre – Calculated for most Indian cities

Naturally Ventilated Buildings

- The Occupants in NV buildings are Thermally adapted to the outdoor temperature of their location.
- The Indoor Operative Temperature of the occupants to stay thermally comfortable is given by the belove equation.

Indoor Operative Temperature (°C) = 0.54 x Mean Monthly Outdoor DBT + 12.83

Acceptability range for naturally ventilated buildings is ±2.38°C

Mixed Mode Ventilated Buildings

- The MM Ventilated buildings takes into consideration the combination of natural ventilation and the availability of air-conditioning when necessary.
- The Occupants in MMV Buildings thermally adapt to the outdoor temperature more than the A/C buildings & somewhat less adaptive to NV building
- The Indoor Operative temperature for the occupants to stay thermally comfortable is given by the below equation.

Indoor Operative Temperature (°C) = 0.28 x Mean Monthly Outdoor DBT + 17.87

Acceptability range for Mixed Mode ventilated buildings is ±3.46°C

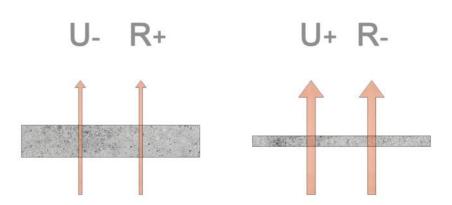
AC Buildings – Air Temperature based Approach

Indoor Operative Temperature (°C) = 0.078 x Mean Monthly Outdoor DBT + 23.25

Acceptability range for Air-Conditioned buildings is ±1.5°C

02-B

EFFECTS OF MATERIALS ON THERMAL COMFORT



U-Value or Thermal Transmittance

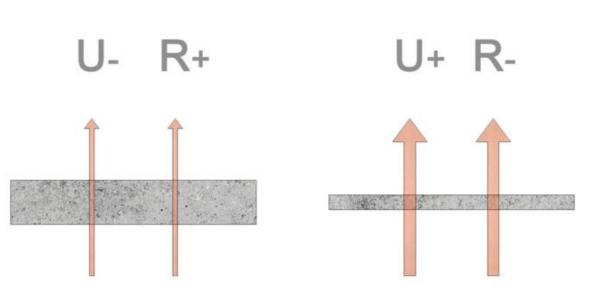
<u>U-Value or Thermal Transmittance (Reciprocal of R-Value)</u>

Thermal performance is quantified in terms of heat loss and is often represented as a U-value or R-value in the building sector. When developing construction strategies, U-value calculations will almost always be required. The rate of heat transfer through a structure (which can be a single material or a composite) divided by the temperature differential across that structure is known as thermal transmittance, also known as U-value.

- W/m²K is the unit of measurement.
- The lower the U-value, the better insulated the structure is.
- Workmanship and installation standards can have a significant impact on thermal transmission.
- The thermal transmittance can be much higher than desirable if insulation is installed improperly, with gaps and cold bridges.
- Thermal transmittance accounts for heat loss by conduction, convection, and radiation

U-Value Calculation

<u>U-Value or Thermal Transmittance (Reciprocal of R-Value)</u>

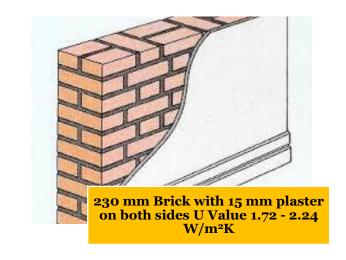

Thermal transmittance is the rate of heat transfer through materials

Unit of U value is W/(m²K)

$$U = \frac{1}{Thermal \ Resistance \ of \ a \ material \ (R)}$$

Where
$$R = \frac{Thickness\ of\ material\ (t)}{Conductivity\ (k)}$$

Conductivity (k) is the rate at which heat is transferred by conduction though material



Comparative in terms of U-Value

Conventional Materials vs Local Materials vs Materials used at LHP

Sr. No.	CONVENTIONAL MATERIALS		LOCAL MA	TERIALS	MATERIALS USED AT LHP	
	MATERIALS	U-VALUE	MATERILAS	U-VALUE	MATERIALS	U-VALUE
1	Red Bricks (230mm)	2.8 W/m ² K	Concrete Block (200mm)	2.8 W/m ² K	RCC Wall (150mm)	10.53 W/m²K
2	Fly Ash Bricks (200mm)	4.28 W/m ² K	Sand Stone Blocks (200mm)	2.6 W/m ² K	AAC Blocks (200mm)	0.77 W/m²K

DAY 1

Session 3

Light House Projects

LHPs are model housing projects with houses built with shortlisted alternate technology suitable to the geo-climatic and hazard conditions of the region, an initiative under the Climate Smart Building Programme. These projects demonstrate and deliver ready to live houses with speed, economy and with better quality of construction in a sustainable manner.

Through the LHPs, it is envisaged to demonstrate innovative construction technologies which are cost-effective, green, and sustainable. These LHPs shall serve as LIVE Laboratories for different aspects of Transfer of technologies to field application, such as planning, design, production of components, construction practices, testing etc. for both faculty and students, Builders, Professionals of Private and Public sectors, and other stakeholders involved in such construction.

Currently the LHPs' are being implemented in six states (Uttar Pradesh, Gujarat, Madhya Pradesh, Gujarat, Jharkhand, and Tripura) of India under Global Housing Technology Challenge (GHTC) – India. These projects will be made up of modern technology and innovative processes and reduce the construction time and make a more resilient, affordable, and comfortable house for the poor.

Light House Projects

Following are the details of Construction Technologies being employed at the Light House Projects selected under the Global Housing Technology Challenge (GHTC) – India

Monolithic Concrete Construction using Tunnel Formwork

- LHP Location: Rajkot, Gujarat
- No. of Houses: 1144

Prefabricated Sandwich Panel System

- LHP Location: Indore, Madhya Pradesh
- No. of Houses: 1024

Precast Concrete Construction System – Precast Components Assembled at Site

- LHP Location: Chennai, Tamilnadu
- No. of Houses: 1152

Precast Concrete Construction System – 3D Volumetric

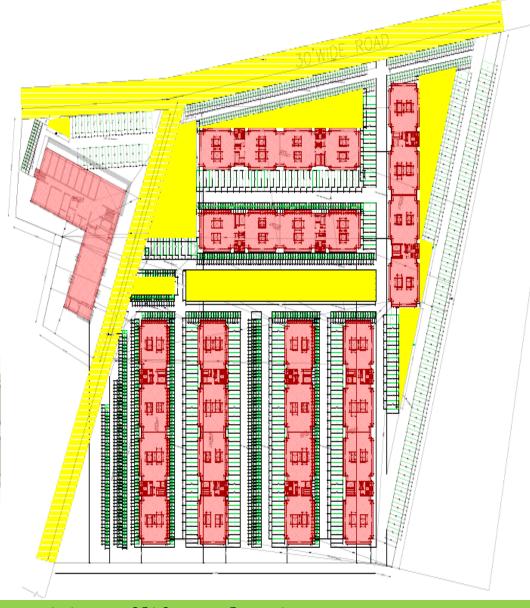
- LHP Location: Ranchi, Jharkhand
- No of Houses: 1008

Light Gauge Steel Structural System & Pre-engineered Steel Structural SystemAgartala, Tripura

- LHP Location: Agartala, Tripura
- No of Houses: 1000

PVC Stay in Place Formwork System

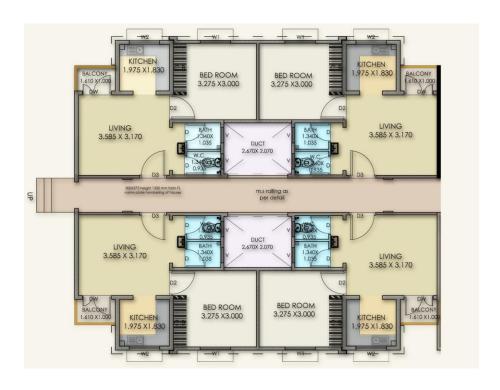
- LHP Location: Lucknow, Uttar Pradesh
- No of Houses: 1040


Summary of Six Light House Projects (LHPs)

LHP Location			Chennai	Rajkot	Indore	Ranchi	Agartala	Lucknow
Sl. No	Particulars	Units	(Tamil Nadu)	(Gujarat)	(Madhya Pradesh)	(Jharkhand)	(Tripura)	(Uttar Pradesh)
1	Name of Technology	Name	Precast Concrete Construction System- Precast Components	Monolithic Concrete Constructio n using Tunnel Formwork	Prefabricated Sandwich Panel System	Precast Concrete Construction System – 3D Volumetric	Light Gauge Steel Frame System (LGSF) with Pre- Engineered Steel Structural System	Stay in Place Formwork System
2	No. of Houses	No.	1,152	1,144	1,024	1,008	1,000	1,040
3	No. of Floors	No.	G+5	S+13	S+8	G+8	G+6	S+13
4	Plot Area	Sqm	33,596	39,599	41,920	31,160	24,000	20,000
5	Per House Carpet Area	Sqm	26.58	39.77	29.04	29.85	30.00	34.50
6	Project Cost	INR (in Cr)	116.27	118.90	128.00	134.00	162.50	130.90
7	Per House cost (with infrastructure)	INR (in Lakh)	10.09	10.39	12.50	13.29	16.25	12.58

- There are 7 blocks in Ground + 8 configuration with 1008 houses along with basic and social infrastructure.
- Ground coverage of the project is 29.3% and FAR is 2.21.
- Green space is 20%.

Typical floor plan



16 dwelling units at each floor of building block with provision of lifts and staircases.

Typical Dwelling Unit plan

Each dwelling unit consists of one hall, one bed room, a kitchen, WC, Bath and a balcony. The carpet area of each unit is 29.85 Sq.mt. The sizes of individual rooms & service areas conform to NBC norms.

Other special features:

- Green rating as per GRIHA
- Use of renewable resources:
 - Rain water harvesting
 - Solar lighting
- Solid waste management
- STP with recycling of waste water
- Fire Fighting System conforming to NBC

Conventional Construction Systems

The prevalent construction systems in India are:

Load bearing Structure

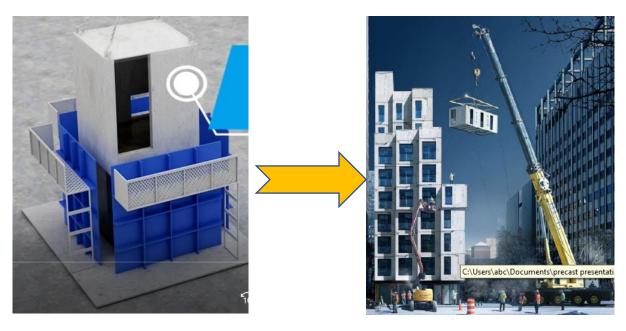
In this system, walls are constructed using bricks/stone/block masonry and floor/roof slabs are of RCC/stone/composite or truss. It is cast in-situ system and called load bearing system as load of structure is transferred to foundation and then to ground through walls.

RCC Framed Structure

In this cast in-situ system, the skeleton of a structure is of RCC column and beam with RCC slab. The infill walls can be of bricks/blocks/stone /panels. The load of the structure is transferred through beam and column to the foundation.

Prevalent Construction Systems

Load bearing Structure



RCC Framed Structure

Technology being Used

Precast Concrete Construction - 3D Volumetric

It is the modern method of building by which precast concrete structural modules like room, toilet, kitchen, bathroom, stairs etc. & any combination of these are cast monolithically in Plant or Casting yard in a controlled condition.

These Modules transported, erected & installed using cranes and are integrated together in the form of complete building unit.

Conventional Construction Systems

Alternate Construction Systems

Slow

Maximum Use of Natural Resources

Waste Generation

Air/Land/Water Pollution

Labor Intensive

Prescriptive Design

Unhealthy Indoor Quality

Regular Maintenance

Energy Intensive

Cast-in-situ Poor Quality

High GHG Emissions

Unsustainable

Fast

Optimum use of Resources

Minimum Waste

Minimum Pollution

Industrialized System

Cost-effective Design

Better health & Productivity

Low Life Cycle Cost

Energy Efficient

Factory Made Quality Products

Low GHG Emissions

Sustainable

MAP SHOWING SIX DIFFERENT LHP LOCATIONS

KERALA

Establishment of the Cluster Cell in Ranchi, Jharkhand under Global Housing Technology Challenge-India (GHTC-India)"

Jharkhand

Bihar

Odisha

West Bengal

LHPs shall serve **as LIVE Laboratories** for different aspects of **Transfer of technologies**

Sustainable Buildings

- * 30%-50% reduction in energy use
- **40%** reduction in water use
- * 35% reduction in GHG emission
- * 75% reduction in waste

3D Precast Volumetric Construction

- Replacing cast in situ RCC structural frame with factory made structural components – 3D
- Customized factory-made volumetric construction i.e. the entire module (room)

LHP-RANCHI (Precast Concrete Construction System – 3D Volumetric)

Advantages

- Upto 90% of the building work including finishing is complete in plant/casting yard leading to significant reduction in construction & occupancy time
- The controlled factory environment brings resource optimization, improved quality, precision & finish
- The required concrete can be designed using industrial by-products such as Fly Ash, Ground granulated blast furnace slag (GGBS), Micro silica etc. resulting in improved workability & durability, while also conserving natural resources. In this project Ground granulated blast furnace slag & silica fume is proposed in concrete.
- With smooth surface it eliminates use of plaster
- The monolithic casting of walls & floor of a building module reduces the chances of leakage
- The system has minimal material wastage (saving in material cost), helps in keeping neat & clean construction site and dust free environment
- Use of optimum quantity of water through recycling
- Use of shuttering & scaffolding materials is minimal
- All weather construction & better site organization

Light House Project (LHP) at Chennai, Tamil Nadu

(Technology: Precast Concrete Construction System-Precast Components)

No. of Dwelling Units: 1152 Nos. (G+5)

No. of Block / Tower: 12 Blocks

Units in each Block / Tower: 96 Nos.

2D Precast Concrete Construction

- Replacing cast in situ RCC structural frame with factory made structural components –
 2D planar elements
- Customized Factory-made beams, columns, wall panels, slab/floors, staircases etc.

Concrete components prefabricated in precast yard or site and installed in the building during construction

LHP-CHENNAI (Precast Concrete Construction System-Precast Components Assembled at Site)

Advantages

- Quality of construction is enhanced significantly due to pre-casting of components by using sophisticated moulds and machineries in factory like environment, assured curing, assured specified cover to reinforcement, proper compaction of concrete results in to dense and impermeable concrete etc. Thus lesser maintenance cost during lifetime of project.
- Inbuilt eco-friendly method of construction in terms of more off-site works in controlled factory like environment results in to significant reduction in wastage of water, natural resources, air pollution and noise pollution.
- Safety of workforce achieved automatically as most of the works are carried out at ground floor in factory like environment, which ultimately enhances the work efficiency and quality.
- Wooden shuttering material is completely avoided and wastage of other construction materials reduced significantly; which results in to conservation of scarce natural resources like soil, sand, aggregate, wood etc.
- Advance procurement of major construction materials, advance pre-casting of structural components and assured completion of work within stipulated completion period will save cost towards escalation & early returns on investments, thus Substantial cost benefit to the client.

Light House Project (LHP) at Agartala, Tripura

(Technology: Light Gauge Steel Structural System & Pre-Engineered Steel Structural System)

No. of Dwelling Units: 1000 Nos. (G+6)

No. of Block / Tower: 7 Blocks

Units in each Block / Tower : A(112), B(154), C(118),

D(168), E(168), F(168) & G(112)

PRE-ENGINEERED STEEL STRUCTURAL SYSTEM

 Replacing cast in situ RCC structural frame with factory made steel (hot rolled) structural system

Steel skeleton with Aerocon panel infills

LIGHT GAUGE STEEL STRUCTURAL SYSTEMS

Replacing cast in situ RCC structural frame with factory made light gauge steel (cold rolled) structural system

LHP-AGARTALA (Light Gauge Steel Structural System & Pre-engineered Steel Structural System)

Advantages

- Due to light weight, significant reduction in design earthquake forces is achieved. Making it safer compared to other structures.
- Fully integrated computerised manufacturing of LGSF sections provide very high precision & accuracy.
- Speedier
- Structure being light, does not require heavy foundation
- Structural elements can be transported to any place including hilly areas/ remote places easily
- Structure can be shifted from one location to other with minimum wastage of materials.
- Steel used can be recycled multiple times
- The system is very useful for post disaster rehabilitation work.

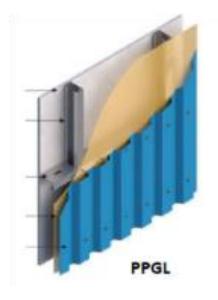
Light House Project (LHP) at Indore, M.P.

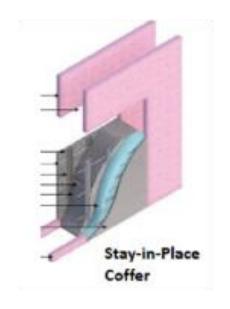
(Technology: Prefabricated Sandwich Panel System & Pre-Engineered Steel Structural System)

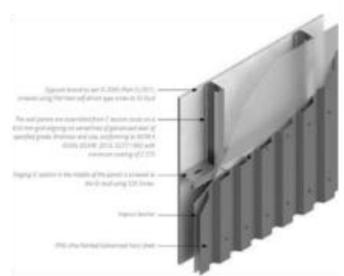
No. of Dwelling Units: 1024 Nos. (S+8)

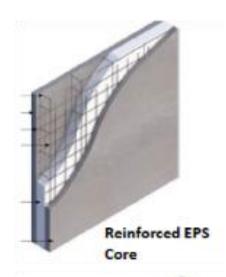
No. of Block / Tower: 8 Blocks

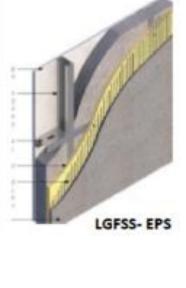
Units in each Block / Tower: 128 Nos.




PREFABRICATED SANDWICH PANEL SYSTEMS


- EPS Core Panel Systems
- Other Sandwich Panel Systems
 - Fibre cement board
 - MgO Board
 - AAC panels





Replacing brick and mortar walls with dry customized walls made in factory

LHP-INDORE (Prefabricated Sandwich Panel System)

Advantages

- The system is dry walling system, brings speed in construction, water conservation (no use of water for curing of walling components at site).
- The sandwich panels have light weight material as core material, which brings resource efficiency, better thermal insulation, acoustics & energy efficiency
- Being light in weight, results in lower dead load of building & foundation size.

Light House Project (LHP) at Lucknow, U.P.

(Technology: Stay in-place Formwork System & Pre-Engineered Steel Structural System)

No. of

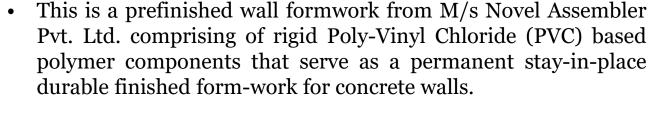
No. of Dwelling Units: 1040 Nos. (S+13)

No. of Block / Tower : 4 Blocks
Units in each Block / Tower : A(494),

B(130), C(208) & D(208)

Modular Tunnel form

- Tunnel formwork is a mechanized system for cellular structures. It is based on two half shells which are placed together to form a room or cell. Several cells make an apartment. With tunnel forms, walls and slab are cast in a single day.
- The formwork is set up for the day's pour in the morning. The reinforcement and services are positioned and concrete is poured in the afternoon. Once reinforcement is placed, concrete for walls and Slabs shall be poured in one single operation. The formwork is stripped the early morning and positioned for the subsequent phase.
- Here the walls and slabs are cast in a form of a tunnel leaving two sides open whereas in monolithic concrete construction the entire room is cast in a single pour..


STAY-IN-PLACE FORMWORK SYSTEM

- Replacing cast-in-situ Formwork with factory made formwork systems
- It is sacrificial formwork or lost formwork means formwork is left in the structural system to later act as insulation or reinforcement cage

Stay-In-Place PVC Wall Forms

- The extruded components slide and interlock together to create continuous formwork with the two faces of the wall connected together by continuous web members forming hollow rectangular components. The web members are punched with oval-shaped cores to allow easy flow of the poured concrete between the components.
- The hollow Novel Wall components are erected and filled with concrete, in situ, to provide a monolithic concrete wall.

LHP-LUCKNOW (Stay in Place PVC formwork System)

Advantages

- Having formwork already as part of system, the construction of building is faster as compared to conventional buildings. The formwork needs some support only for alignment purpose.
- The formwork consists of rigid PVC components, which do not corrode, chip or stain & resistant to UV, bacteria, fungi etc., thus ensuring long life of the structure.
- The polymer content used in manufacturing of formwork is up to 55% recycled content and are further recyclable, making it an eco-friendly material.
- The form work system has specific advantage for use in coastal areas as due to polymer encasement it offers higher durability.
- With concrete as filling material, the curing requirement of concrete is significantly reduced, thus saving in precious water resources.
- The formwork system does not have plastering requirement & gives a aesthetic finished surface in different color options.
- The system provides advantages in terms of structural strength, durability enhancement, weather resistance, flexural strength, thermal insulation and ease of construction.

(Technology: Monolithic Concrete Construction System)

No. of Dwelling Units: 1144 Nos. (S+13)

No. of Block / Tower: 11 Blocks Units in each Block / Tower: 104 Nos.

MONOLITHIC CONCRETE CONSTRUCTION

- Replacing cast-in-situ Formwork with factory made customized formwork systems
- Formwork material is Aluminium
 / composites / steel having 100 to
 500 repetitions
- Assembly line construction i.e. placing the formwork, pouring the concrete, moving the formwork to upper level

LHP-RAJKOT (Monolithic Concrete Construction using Tunnel Formwork)

Advantages

- Facilitates rapid construction of multiple/ mass modular units (similar units)
- Results in durable structure with low maintenance requirement
- The precise finishing can be ensured with no plastering requirement
- The concrete can use industrial by-products such as Fly Ash, Ground granulated blast furnace slag (GGBFS), Micro silica etc. resulting in improved workability & durability, while also conserving natural resource
- Being Box type structure, highly suitable against horizontal forces (earthquake, cyclone etc.)
- The large number of modular units bring economy in construction.

DAY 1

Tea Break

DAY 1

Session 4

04

GREEN BUILDINGS

What is Green Building?

- A 'green' building is a building that, in its design, construction or operation, reduces or eliminates negative impacts, and can create positive impacts, on our climate and natural environment.
- Green buildings preserve precious natural resources and improve our quality of life.

The Benefits

Environmental Benefits

- Protect Biodiversity & ecosystems
- Improve air and water quality
- Reduce Water streams
- Conserve natural resources

Economic Benefits

- Reduce operating cost
- Tax incentives and subsidies for green buildings and renewable energy concepts
- Create, expand and shape markets for green product and services
- Improve Occupant Productivity

Social Benefits

- Enhance occupant comfort & health
- Heighten aesthetic qualities
- Minimize strain on local infrastructure
- Improve overall quality of life

SUSTAINABLE GOALS

11

Green buildings & the Sustainable Development Goals

Goals of Green Buildings

Green building brings together a vast array of practices and techniques to reduce and ultimately eliminate the impacts of buildings on the environment and human health.

It often emphasizes taking advantage of renewable resources, e.g., using sunlight through passive solar, active solar, and photovoltaic techniques and using plants and trees through green roofs, rain gardens, and for reduction of rainwater runoff.

Goals of Green Buildings Life Cycle Assessment (LCA)

Setting & Structure define efficiency

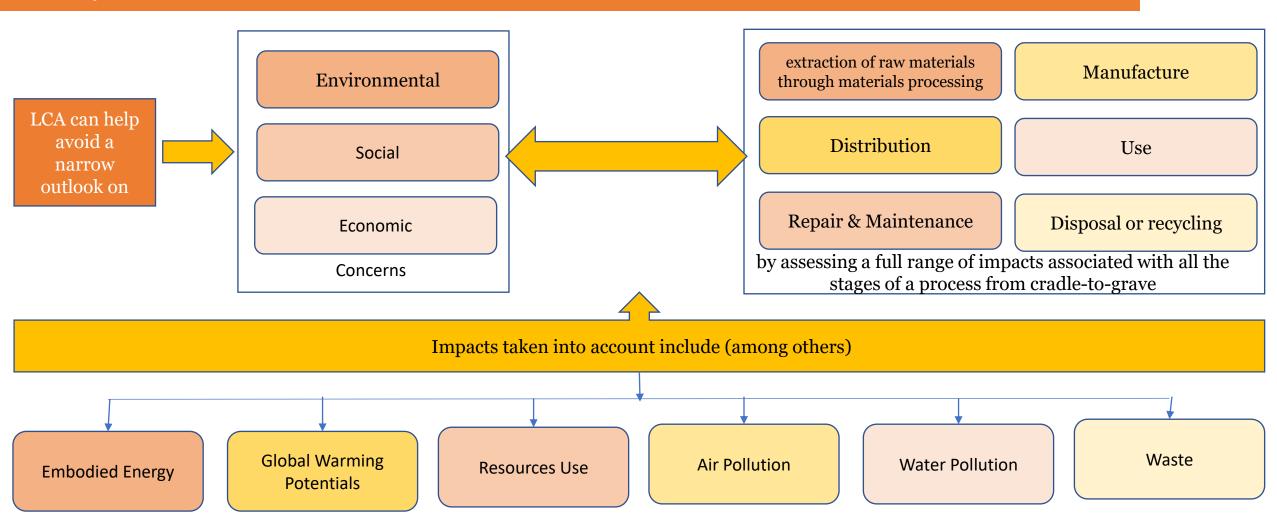
Energy Efficiency

Water Efficiency

Material Efficiency

Waste Reduction

Many other techniques, such as using packed gravel or permeable concrete instead of conventional concrete or asphalt to enhance replenishment of ground water, are used as well. While the practices, or technologies, employed in green building are constantly evolving and may differ from region to region, there are fundamental principles that persist from which the method is derived:



Life Cycle Assessment (LCA)

Setting & Structure Design Efficiency

The foundation of any construction project is rooted in

Concept Stage

Design Stage

The concept stage, in fact, is one of the major steps in a project life cycle, as it has the largest impact on cost and performance. In designing environmentally optimal buildings, the objective is to minimize the total environmental impact associated with all lifecycle stages of the building project. However, building as a process is not as streamlined as an industrial process, and varies from one building to the other, never repeating itself identically

In addition, buildings are much more complex products, composed of a multitude of materials and components each constituting various design variables to be decided at the design stage. A variation of every design variable may affect the environment during all the building's relevant lifecycle stages.

Energy Efficiency

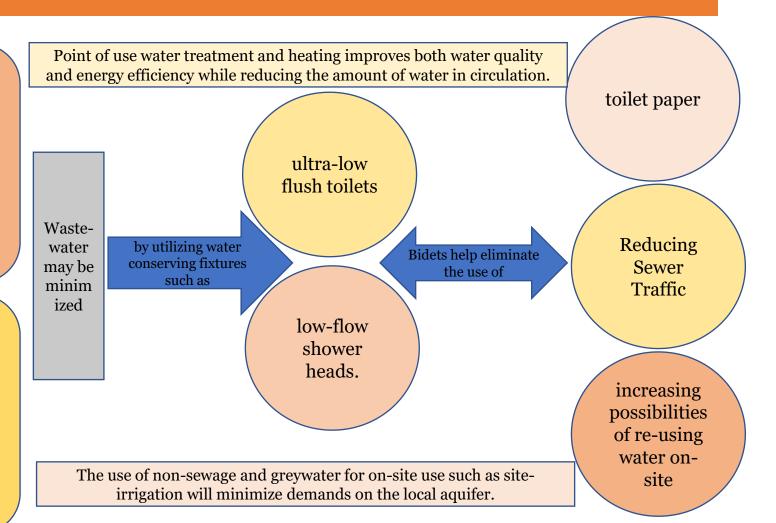
Green buildings often include measures to reduce energy consumption – both the embodied energy required to extract, process, transport and install building materials and operating energy to provide services such as heating and power for equipment

To reduce operating energy use, high-efficiency windows and insulation in walls, ceilings, and floors increase the efficiency of the building envelope, (the barrier between conditioned and unconditioned space).

Another strategy, passive solar building design, is often implemented in low-energy homes

Designers orient windows and walls and place awnings, porches, and trees to shade windows and roofs during the summer while maximizing solar gain in the winter

In addition, effective window placement (day lighting) can provide more natural light and lessen the need for electric lighting during the day. Solar water heating further reduces energy costs.



Water Efficiency

Reducing water consumption and protecting water quality are key objectives in sustainable building. One critical issue of water consumption is that in many areas, the demands on the supplying aquifer exceed its ability to replenish itself. To the maximum extent feasible, facilities should increase their dependence on water that is collected, used, purified, and reused onsite.

The protection and conservation of water throughout the life of a building may be accomplished by designing for dual plumbing that recycles water in toilet flushing.

Material Efficiency

Building materials

typically considered to be 'green' include

lumber from forests that have been certified to a third-party forest standard, rapidly renewable plant materials like

bambo o and straw

insulating concrete forms

dimensio n stone, recycle d stone recycle d metal

and other products that are Non Toxic

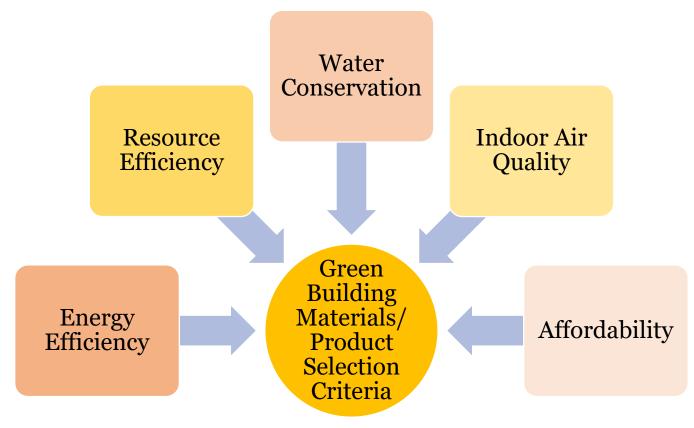
reusable

renewable, and/or recyclable

The EPA (Environmental Protection Agency) also suggests using recycled industrial goods, such as coal combustion products, foundry sand, and demolition debris in construction projects Building materials should be extracted and manufactured locally to the building site to minimize the energy embedded in their transportation

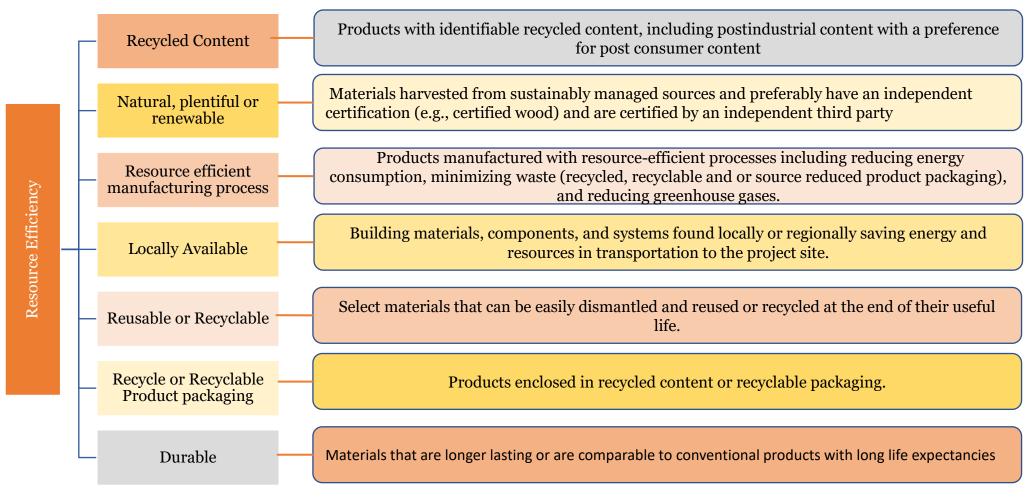
Where possible, building elements should be manufactured offsite and delivered to site, to maximize benefits of off-site manufacture including minimizing waste, maximizing recycling (because manufacture is in one location), high quality elements, better OHS management, less noise and dust.

Waste Reduction



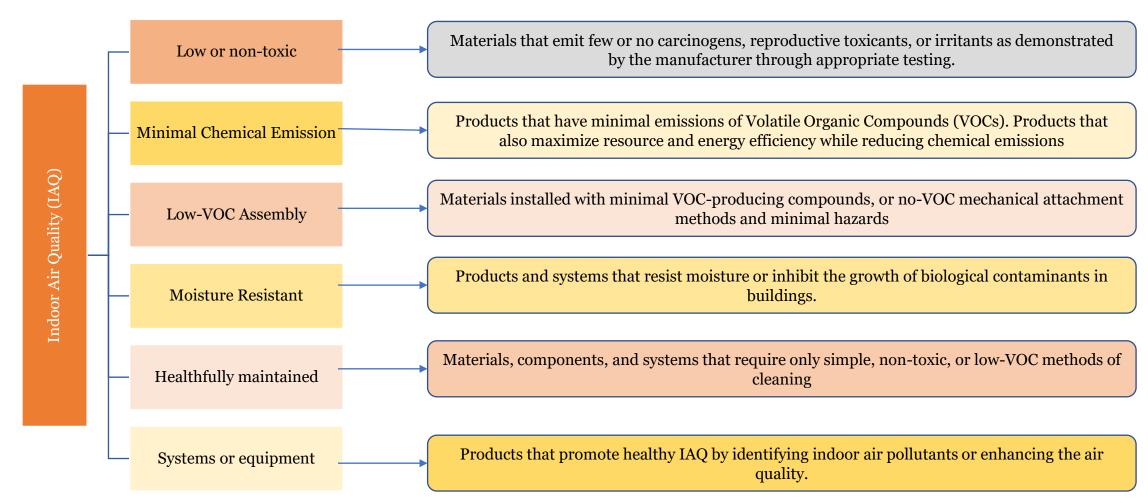
Green Building Materials

Selection criteria like what is presented below was also used for the East End Project as identified in the Review of Construction Projects Using Sustainable Materials.



Green Building Materials - Resource Efficiency

improving the appearance, performance, quality, functionality, or



Green Building Materials - Indoor Air Quality (IAQ)

Green Building Materials - Indoor Air Quality (IAQ)

Materials, components, and systems that help reduce energy consumption in buildings and facilities

Energy Efficiency can be maximized by utilizing materials and systems that meet the following criteria:

Water Conservation can be obtained by utilizing materials and systems that meet the following criteria:

Products and systems that help reduce water consumption in buildings and conserve water in landscaped areas Affordability can be considered when building product life-cycle costs are comparable to conventional materials or, are within a project-defined percentage of the overall budget.

Green Building Materials – Three Basic Steps of Product Selection

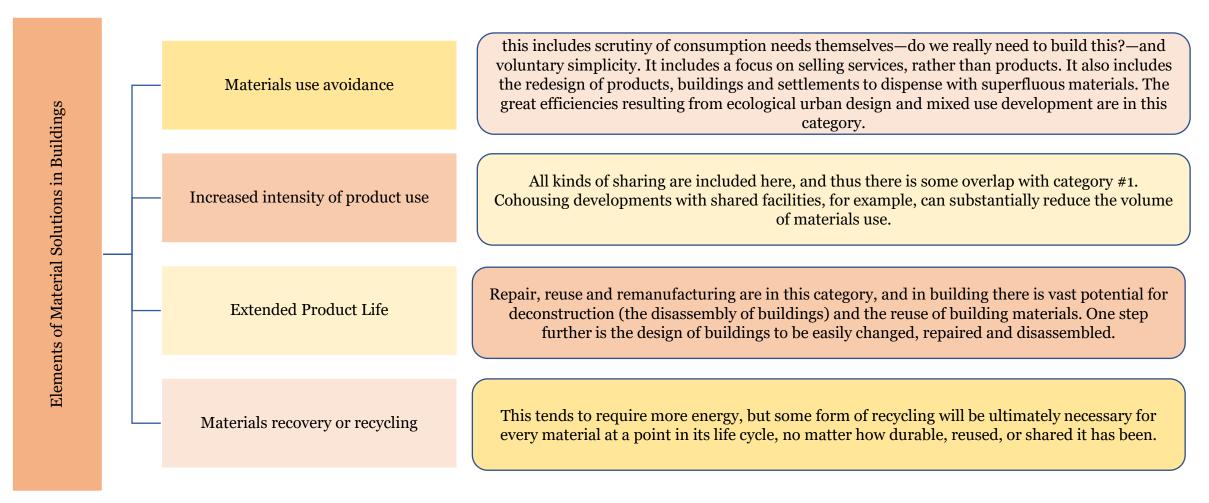
This step often involves the use of an evaluation matrix This step involves gathering all technical information to Three Basic Steps of for scoring the project-specific environmental criteria. be evaluated, including manufacturers' information Product Selection The total score of each product evaluation will indicate such as Material Safety Data Sheets (MSDS), Indoor Air the product with the highest environmental attributes. Quality (IAQ) test data, product warranties, source Individual criteria included in the rating system can be material characteristics, recycled content data, weighted to accommodate project-specific goals and environmental statements, and durability information objectives **Evaluation** Selection Research In addition, this step may involve researching other Materials are the stuff of economic life in our industrial environmental issues, building codes, government world. They include the resource inputs and the product outputs of industrial production. How we handle them regulations, building industry articles, model green building product specifications, and other sources of is a major determinant of real economic efficiency, and also has a major impact on our health and the health of product data. Research helps identify the full range of the natural environment the project's building material options.

This step involves confirmation of the technical information, as well as filling in information gaps. For example, the evaluator may request product certifications from manufacturers to help sort out possible exaggerated environmental product claims.

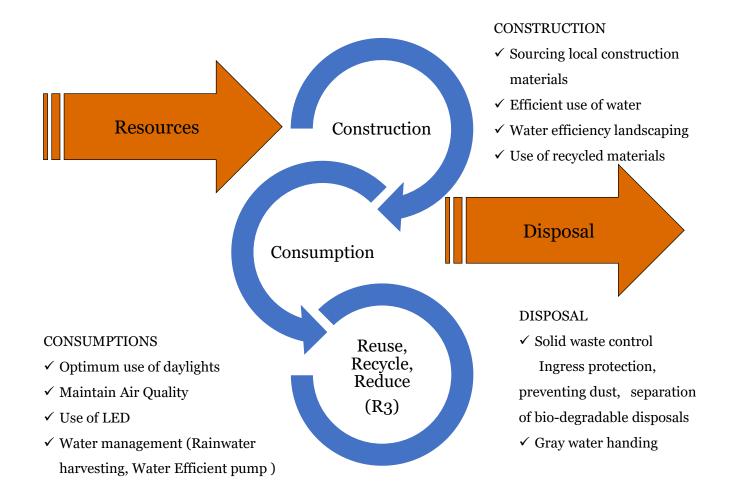
Evaluation and assessment is relatively simple when comparing similar types of building materials using the environmental criteria, e.g., a recycled content assessment between various manufacturers of medium density fiberboard is a relatively straightforward "apples to apples" comparison

However, the evaluation process is more complex when comparing different products with the same function.

Then it may become necessary to process both descriptive and quantitative forms of data.

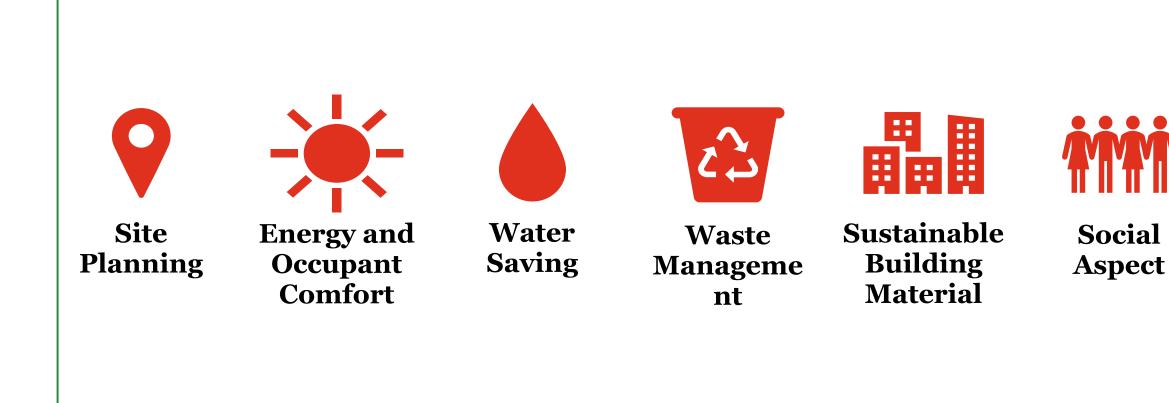


Green Building Materials – Elements of Material Solutions in Building

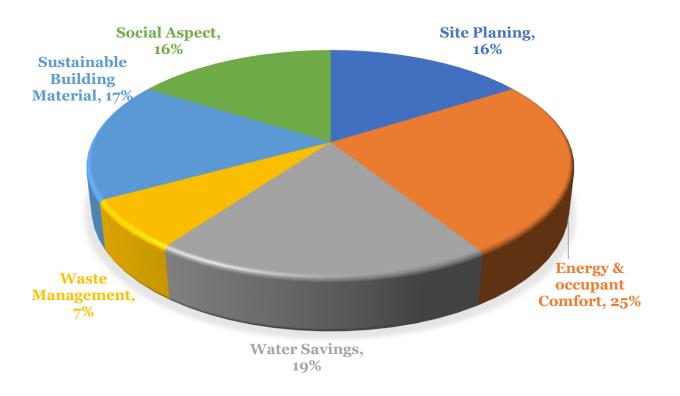


Life Cycle of Green Building

GREEN RATING SYSTEMS



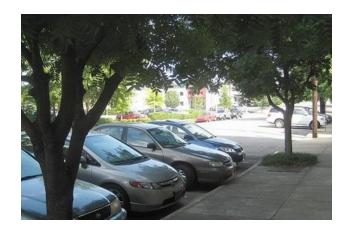
Features that can make an Affordable building 'GREEN'



GRIHA Rating System: AFFORDABLE HOUSING

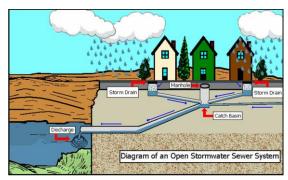
Rating Thresholds	Rating
86 and above	5 Star
71-85	4 Star
56-70	3 Star
41-55	2 Star
25-40	1 Star

POINT WEIGHTAGES



Site Planning

Climat e Type	Passive Design Strategies		
	Solar Chimney/ Wind Tower		
	Courtyards		
	Roof Pond for Evaporative Cooling		
	Reduce Solar Access		
	Building/ Site planning to increase cross ventilation (layout of windows in the rooms and building for wind flow)		
	Cavity Walls/ Thermal mass to reduce heat gain/loss		
	Dense vegetarian cover to moderate micro-climate		
Design accordingly site slope			
	Light Shelves		
	Internal distribution of spaces to be carried out such that buffer spaces like store rooms, staircases, toilets etc are located on the eastern and western facades		
	Cool roofs in the form of vegetated roof/ terrace gardens/ roof ponds		



Site Planning

Vegetated Roof

Strom water management (https://www.thewatertreat ments.com)

SRI Coating

Light Shelves (https://www.designingbuildings.co.u

Grass pavers (https://greenroutesolutions.com/)

Mosaic tiles (https://www.dreamstime.com/

Design to mitigate -UHIE

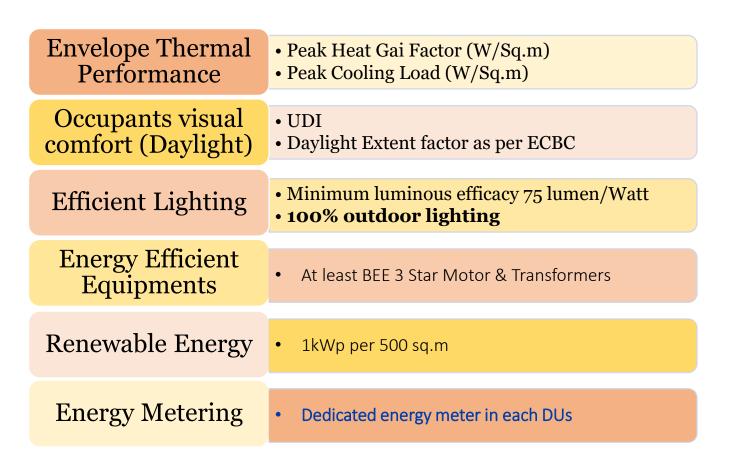
• SRI Coating, Grass pavers

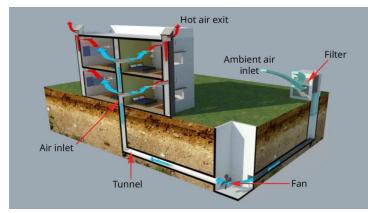
Landscape preservation

• Protection mature trees

Strom Water management

Reduction in air and soil pollution



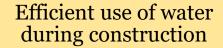


2

Energy & Occupant Comfort

Earth Air System https:/

BEE Star ratings



Water Savings

- Gunny Bag/hessian cloth and ponding for curing
- Additives
- Use of treated wastewater/ captured rainwater

Optimizing the Building & Landscape water demand

- 20% reduction w.r.t base case
- Reduce the total landscape water requirement(Sprinkler Irrigation, Drip irrigation)

Water Reuse

- Sewage Treatment Plant
- Reuse of treated and rain water

Water Metering

- Installation of the water meter
- Sub-water meter in each DUs

GUNNY Bags (https://blog.fabricuk.c

Water meter (https://www.nobroker.in/)

Sprinkler

Waste Management

Construction Waste Management

 Waste management plan as per 'Construction and Demolition Waste Management Rules, 2016

- Compliance with Solid Waste Management Rules, 2016
- Collection & Segregation (multi-coloured bins)
- Safe & hygienic storage
- Safe recycling
- Treating organic waste (biogas/manure) (>100kg/day)

https://www.nbmcw.com/

150 million tonnes of construction and demolition (C&D) waste every year. (2019) Recycling capacity is a about 6,500 tonnes per day (TPD) -- just about 1 per cent.*

*https://www.cseindia.org/

5

Sustainable Building Materials

Reduction in environmental impact of construction (Building Structure)

- Use of BIS recommended waste materials (OPC, aggregate, sand)
- Use of recycled materials (Steel frame, polystyrene components, Gypsum panels)
- Embodied energy calculation

Use of low environmental impact materials in building interiors

- · Stones from India
- Composite wood based product
- FSC Chain of custody certified products
- Products with 5% recycled content

Use of recycled content in roads and pavements

8% (min) as per CPRI and IRC Guidelines

Low VOC paints, adhesives, sealants and composite wood products

VOC limit (g /litre) specified

Zero ODP materials

• CFC, HCFCs free from Building insulation , HVAC & refrigeration equipment and fire fighting system

Portland Slag Cement, commonly known as PSC Up to 45- 50% slag, 45% – 50% clinker, and 3-5% gypsum

Compacted EPS Blocks

Gypsum Board (https://www.boardandwall.com/)

5

Social Aspects

Ramp for physically handicapped

Q & A Session

Vote of Thanks

Session 5

05

ENS 2021

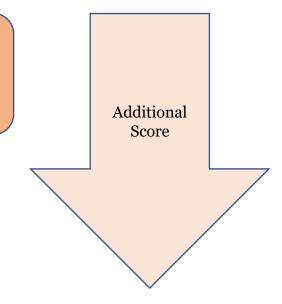
Eco – Niwas Samhita 2021 Scope

Residential buildings built on a plot area of ≥ 500 m²

The Code Applies to

Residential part of *Mixed land-use building* projects, built on a plot area of ≥ 500 m².

ECO – NIWAS SAMHITA 2021 CODE COMPLIANCE


Prescriptive Method

Compliance Mandatory +

Components	Minimum Points	Additional Points	Maximum Points
Building Envelope			
Building Envelope	47	40	87
Building Services			
Common area and exterior lighting	3	6	9
Elevators	13	9	22
Pumps	6	8	14
Electrical Systems	1	5	6
Indoor Electrical End-Use			
Indoor Lighting		12	12
Comfort Systems		50	50
ENS Score	70	130	200

Point System Method

- Minimum Points
- Additional Points
- Maximum Points

Renewable Energy Systems Components	Minimum Points	Additional Points	Maximum Points
Solar Hot Water Systems		10	10
Solar Photo Voltaic		10	10
Additional ENS Score		20	

ECO – NIWAS SAMHITA 2021 CODE COMPLIANCE

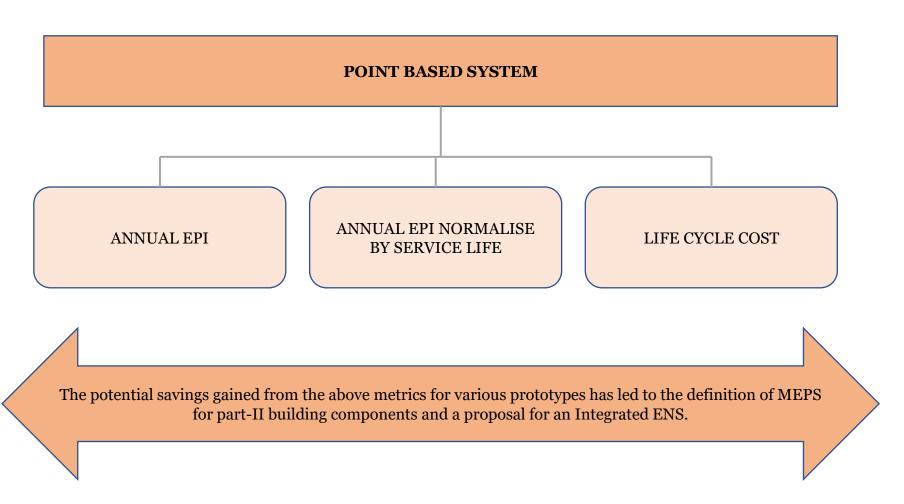
Project Category	Minimum ENS Score
Low rise buildings	47
Affordable Housing	70
High rise buildings	100

Low Rise Buildings: A structure of four stories or less, and/or a structure of up to 15 metres in height (without stilts) and up to 17.5 metres in height (including stilt).

Affordable Housing Projects:

- for Affordable houses are Dwelling Units (DUs)
- for Economically Weaker Section (EWS) category
- For Lower Income Group (LIG) category

High Rise Buildings: A structure with more than four stories and/or a height of more than 15 metres (without stilts) and 17.5 metres (including stilt).



Point Based System

Advantages of Point Based System

- A point system is a less complicated way of assigning weight to building components that are relevant in terms of energy efficiency and compliance. Each dot does not always imply a percentage reduction in energy consumption.
- Singapore began with prescriptive compliance, but as the code grew, the point-based model was adopted as a means of compliance, combining trade-off and prescriptive criteria.

Ease of comprehending by the citizens	•	Easy to comprehend by citizens for both overall energy performance of a residential building and incorporated component level energy efficiency
Trade-off	•	Trade-off among components is possible but on a stepped EE improvements giving limited flexibility to owner to show compliance Easy to deter possibility of gaming
Compliance	•	Low expertise is required for doing and checking the compliance Require simpler tool for showing compliance Will have only one compliance approach
Future revision	•	Easy to accommodate additions and removal of components from code. Easier for states to make any revisions/amendments

Mandatory Requirements

- 1. Building Envelope: All of the ENS Part I requirements must be met.
- 2. Power Factor Correction: In all three phases, 0.97 at the point of connection or the state requirement, whichever is more strict.
- 3. Energy Monitoring: Common area lighting (Outdoor lighting, corridor lighting and basement lighting)
 - Elevators
 - Water pumps
 - Basement car parking ventilation system
 - Electricity generated from power back-up
 - Electricity generated through renewable energy systems
 - Lift pressurization system
- 4. Electrical Vehicle Charging Station: If it is installed, it must follow the new criteria for Charging Infrastructure established by the Ministry of Power.
- 5. Electrical Systems: Distribution losses in the ENS building must not exceed 3% of total power demand. At design load, the voltage drop for feeders is less than 2%. At design load, the voltage drop for the branch circuit is less than 3%.

Prescriptive Method

- 1. Building Envelope:
 - ➤ VLT and WFR as per ENS Part 1
 - ➤ RETV (for all climate except cold) max 12 W/m2
 - ➤ Thermal Transmittance for cold max 1.3W/m2K
 - ➤ Roof 1.2W/m2K
- 2. Common Area & Exterior Lighting: Either LPD or Efficacy and use of PhotoSensor

Common Areas	Maximum LPD (W/m²)	Minimum luminous efficacy (lm/W)
Corridor lighting & Stilt Parking	3.0	All the permanently installed lighting fixtures shall use lamps with an efficacy of at least 105 lumens per Watt
Basement Lighting	1.0	All the permanently installed lighting fixtures shall use lamps with an efficacy of at least 105 lumens per Watt

Exterior Lighting Areas	Maximum LPD (in W/m²)
Driveways and parking (open/ external)	1.6
Pedestrian walkways	2.0
Stairways	10.0
Landscaping	0.5
Outdoor sales area	9.0

Prescriptive Method

- 3. Elevators, if applicable::
 - ➤ Lamps: 85l/W
 - > Automatic switch off control
 - ➤ IE4 motors
 - > VFDs
 - ➤ Regenerative drives
 - ➤ Group Automatic operation
- 4. Pumps, if applicable: Min Eff -70% or BEE 5 Star
- 5. Electrical System, if applicable:
 - ➤ Distribution loss less than 3%
 - > Dry Type Transformer as mentioned in table
 - ➤ Oil Type Transformer BEE 5 Star

Point System Method

Minimum Points - are a set of points that must be obtained for each component in order to demonstrate ENS compliance

Additional Points - These are the points provided for implementing additional or improved energy efficiency measures in a component. These points can be combined with others to get the total score for ENS compliance described in section 3.1.2.

The total points available for each component are the **maximum points**.

Components	Minimum Points	Additional Points	Maximum Points
Building Envelope			
Building Envelope	47	40	87
Building Services			
Common area and exterior lighting	3	6	9
Elevators	13	9	22
Pumps	6	8	14
Electrical Systems	1	5	6
Indoor Electrical End-Use			
Indoor Lighting		12	12
Comfort Systems		50	50
ENS Score	70	130	200

- 1 Building Envelope (87 Max Points out of which 47 are essential)
 - ➤ Thermal Transmittance of Roof (7 Points)
 - > RETV (80 Points)

Thermal	ITrar	emitta	nco	of R	of
пиегина	1 1 2	ISHHILIAI		1) I K (101

Minimum: Thermal transmittance of roof shall

comply with the maximum Uroof value of 1.2 W/m2·K.

Up to 4 Points

Additional:

1 Point for every reduction of 0.23 W/m2·K in thermal transmittance of roof from the Minimum requirement prescribed under §6.1(a).

Maximum 3Points

RETV	
The RETV for the building envelope (except roof) for four climate zones, namely, Composite Climate, Hot-Dry Climate, Warm-Humid Climate, and Temperate Climate, shall comply with the maximum RETV of 15 W/m2.	44 Points
For RETV less than 15 and upto 12 W/m2, score will be calculated by following equation:	
74 − 2 x (RETV) (@2 points per RETV reduction)	Up to 50 Points
Additional: For RETV less than 12 and upto 6 W/m2, score will be calculated by following equation:	
110 – 5 x (RETV) (@ 5 points per RETV reduction)	Up to 80 points
Additional:	
For RETV less than 6 W/m2	80 Points

2 – Common Area and Exterior Lighting (9 Points)

Common Areas	Maxim um LPD (W/m²)	Minimum luminous efficacy (lm/W)
Corridor lighting & Stilt Parking	3.0	All the permanently installed lighting fixtures shall use lamps with an efficacy of at least 85 lumens per Watt
Basement Lighting	1.0	All the permanently installed lighting fixtures shall use lamps with an efficacy of at least 85 lumens per Watt

Exterior Lighting Areas - at least 85 lm/W and maximum LPD requirements given in Table	Maximum LPD (in W/m²)
Driveways and parking (open/ external)	1.6
Pedestrian walkways	2.0
Stairways	10.0
Landscaping	0.5
Outdoor sales area	9.0

Additional Points (6 points)		
Corridor lighting & Stilt Parking	1 Point for installing 95 lm/W Or 2 Point for installing 105 lm/W	
Basement Lighting	1 Point for installing 95 lm/W Or 2 Point for installing 105 lm/W	
Exterior Lighting Areas	2Points for Installing photo sensor or astronomical time switch	

3 – ELEVATORS (22 Points)

Minimum:

Elevators installed in the ENS building shall meet all the following requirements:

- i. Install high efficacy lamps for lift car lighting having minimum luminous efficacy of 85 lm/W
- ii. Install automatic switch-off controls for lighting and fan inside the lift car when are not occupied
- iii. Install minimum class IE 3 high efficiency motors
- iv. Group automatic operation of two or more elevators coordinated by supervisory control

13 Points

Additional:

- Additional points can be obtained by meeting the following requirements:
- ii. Installing the variable voltage and variable frequency drives. (4 points)
- iii. Installing regenerative drives. (3 points)
- iv. Installing class IE4 motors. (2 points)

9 Points

4 – Pumps (14 Points)

Minimum:

Either hydro-pneumatic pumps having minimum mechanical efficiency of 60% or BEE 4 star rated Pumps shall be installed in the ENS building.

6 Points

Additional:

Additional points can be obtained by meeting the following requirements:

- Installation of BEE 5 star rated pumps (5 Points)
- Installation of hydro-pneumatic system for water pumping having minimum mechanical efficiency of 70% (3 Points)

8 Points

5 – Electrical Systems (6 Points)

Minimum:

i. Power transformers of the proper ratings and design must be selected to satisfy the minimum acceptable efficiency at 50% and full load rating. The permissible

loss shall not exceed the values listed in Table 8 for dry type transformers and BEE 4-star rating in Table 9 for oil type transformers.

1 Points

Additional:

Additional points can be obtained by providing all oil type transformers with BEE 5 star rating.

5 Points

6 – Indoor Lightings (12 Points)

Minimum:

All the lighting fixtures shall have lamps with luminous efficacy of minimum 85 lm/W installed in all bedrooms, hall and kitchen.

4 Points

Additional:

Additional points for indoor lighting by installing all lighting fixtures in all bedrooms, hall and kitchen shall have lamps luminous efficacy as per following:

- i. 95 lm/w (3 Points)
- ii. 105 lm/W (8 Points)

Upto 8 Points

7 – Comfort Systems (50 Points) – Ceiling Fans

Minimum:

- i. All ceiling fans installed in all the bedrooms and hall in all the dwelling units shall have a service value as given below:
- For sweep size <1200 mm: equal or greater than 4 m3/minute·Watt
- For sweep size >1200 mm: equal or greater than 5 m3/minute·Watt

i. BEE Standards and Labeling requirements for ceiling fans shall take precedence over the current minimum requirement, as and when it is notified as mandatory.

6 Points

Additional:

Additional points for ceiling fans by installing in all the bedrooms and hall in all the dwellingunits as per following:

- i. 4 Star
- ii. 5 Star 3 Points

Weighted Average of different Comfort Systems installed in a building allowed for better flexibility (Points Achieved for AC)

Minimum: Unitary Type: 5 Star Split AC: 3 Star 20 Points VRF: 3.28 EER **Chiller: Minimum ECBC Level** Additional 9 points for: Split AC: 4 Star VRF: Not Applicable as on date, however, whenever Star labelling of BEE is launched, 9 Points Star 4 will be applicable Chiller: Minimum ECBC+ Level as mentioned in ECBC 2017 Additional 21 points for: Split AC: 5 Star VRF: Not Applicable as on date, however, whenever Star labelling of BEE is launched, 21 Points Star 5 will be applicable Chiller: Minimum SuperECBC Level as mentioned in ECBC 2017

8 – Solar Water Heating (10 Points)

Minimum:

The ENS compliant building shall provide a solar water heating system (SWH) of minimum BEE 3Star label and is capable of meeting 100% of the annual hot water demand of top 4 floors of the residential building.

or

100% of the annual hot water demand of top 4 floors of the residential building is met by the system using heat recovery

5 Points

Additional:

Additional points can be obtained by installing SWH system as per as per following:

- i. 100% of the annual hot water demand of top 6 floors of the residential building (2 points)
- ii. 100% of the annual hot water demand of top 8 floors of the residential building (5 points)

Upto 5 Points

9 – Solar Photo Voltaic (10 Points)

Minimum:

The ENS compliant building shall provide a dedicated Renewable Energy Generation Zone (REGZ) –

- Equivalent to a minimum of 2 kWh/m2.year of electricity; or
- Equivalent to at least 20% of roof area.

The REGZ shall be free of any obstructions within its boundaries and from shadows cast by objects adjacent to the zone.

5 Points

Additional:

Additional points can be obtained by installing solar photo voltaic as per following:

- i. Equivalent to a minimum of 3 kWh/m2.year of electricity or Equivalent to at least 30% of roof area (2 points)
- ii. Equivalent to a minimum of 4 kWh/m2.year of electricity or Equivalent to at least 40% of roof area (5 points)

Upto 5 Points

Group Exercise

DAY 2

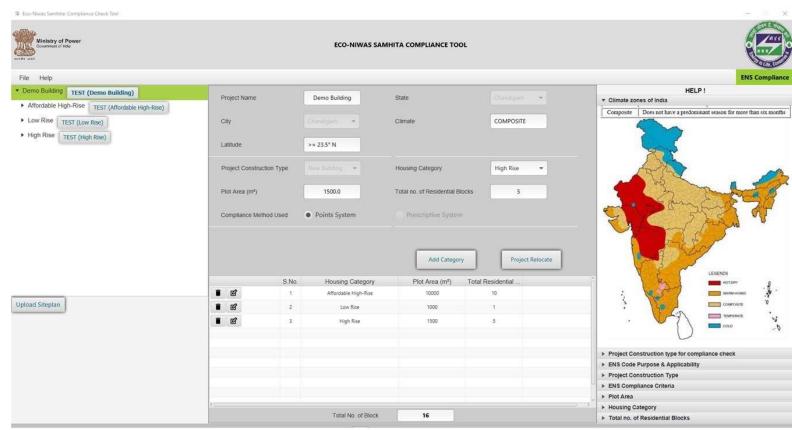
Tea Break

DAY 2

Session 6

6-A

ENSCOMPLIANCE TOOLS

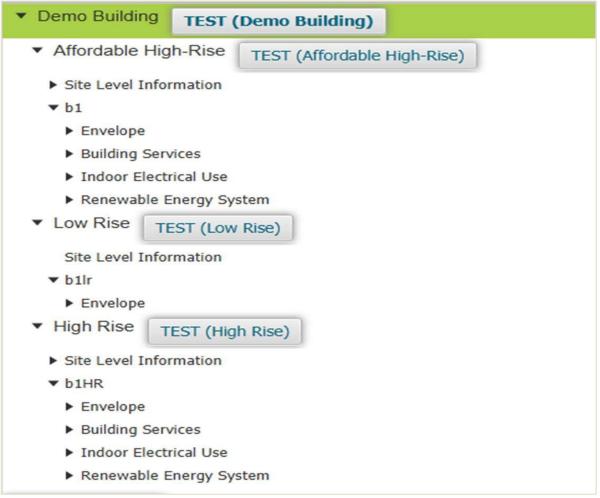


Introduction

- Quick design and compliance checks benchmarks of ECONIWAS SAMHITA.
- 5 key features in consideration:
 - User friendliness
 - 2. Responsiveness
 - 3. Adaptability
 - 4. Dynamism
 - Resourcefulness.
- Compliance for Both Prescriptive and Points Based Systems.
- Categories included:
 - 1. High rise
 - 2. Low Rise
 - 3. Affordable
 - 4. Mixed Use

• Provisions for multiple housing category addition for compliance evaluation

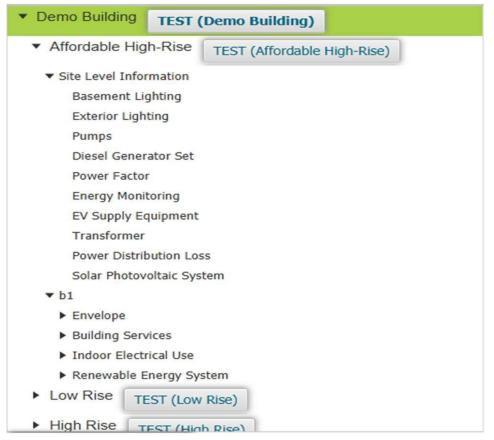
	S.No.	Housing Category	Plot Area (m²)	Total Residential Block	î
	1	Affordable High-Rise	10000	10	
	2	Low Rise	1000	1	
	3	High Rise	1500	5	
< (~
		Total No. of Block	16		

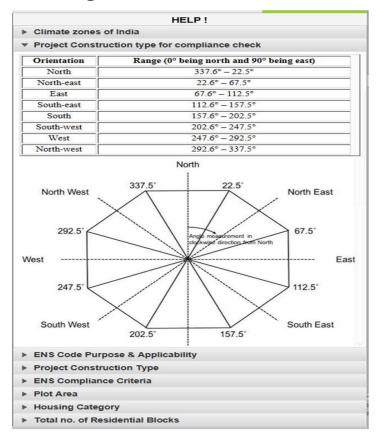


• Easy to navigate tree-view structure



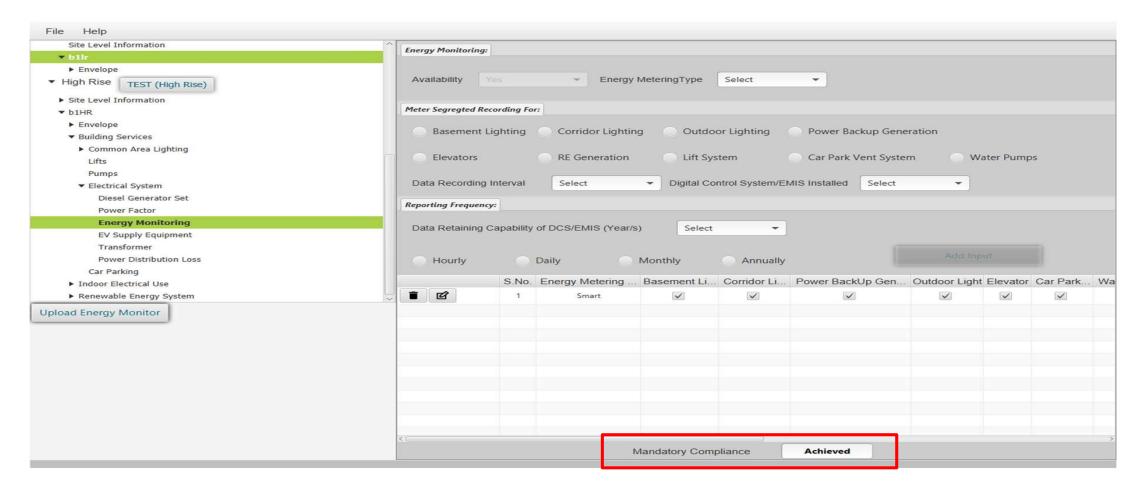
• Project relocation feature for multiple domain use



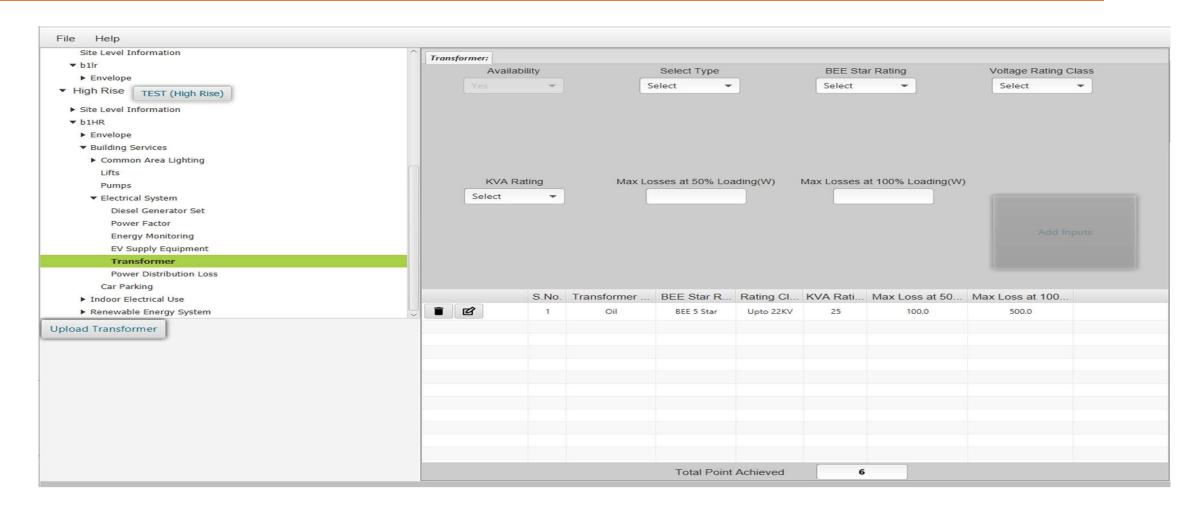


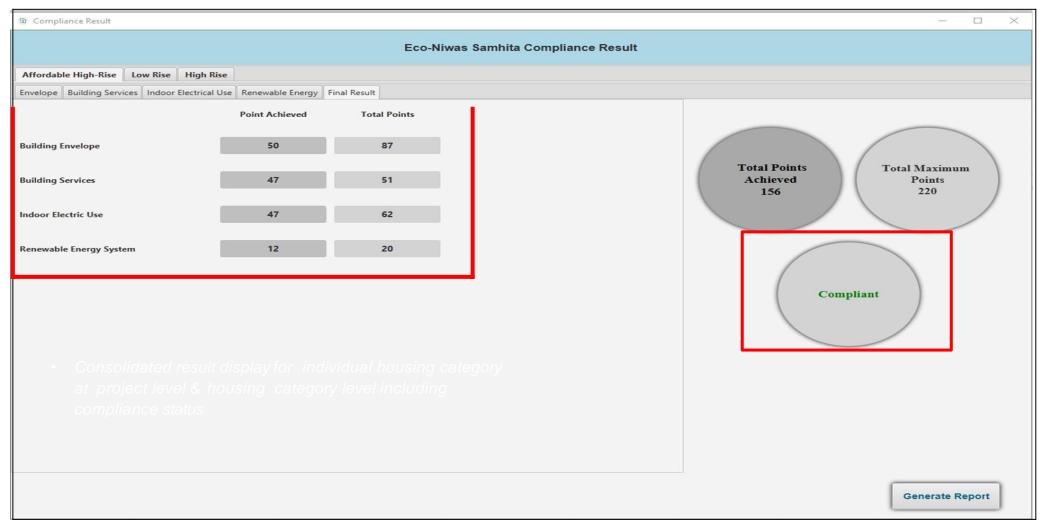
Segregated site level & block level inputs for ease in information flow

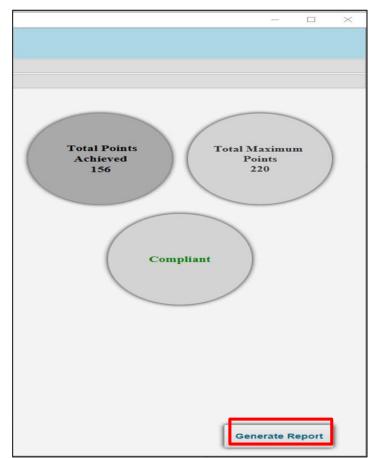
• Comprehensive help panel on each form for easy user referencing

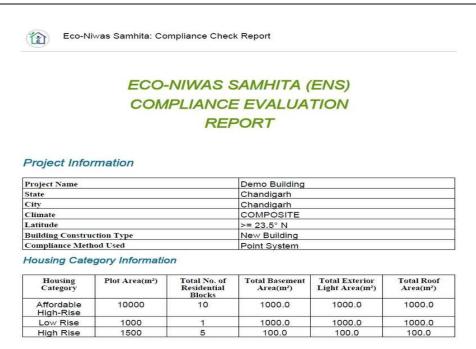


Component level display for mandatory provisions and points achieved









Provisions for PDF output reporting for each input and corresponding output

	COM	PLIANCE	SAMHITA (E EVALUA PORT		
Project Info	mation				
Project Name			Demo Building		
State			Chandigarh		
City			Chandigarh		
Climate			COMPOSITE		
Latitude			>= 23.5° N		
Building Constru	ction Type		New Building		
Compliance Meth	od Used		Point System		
Housing Cate Housing Category	Plot Area(m²)	Total No. of Residential Blocks	Total Basement Area(m²)	Total Exterior Light Area(m²)	Total Roof Area(m²)
Affordable High-Rise	10000	10	1000.0	1000.0	1000.0
Low Rise	1000	1	1000.0	1000.0	1000.0
	1500	5	100.0	100.0	100.0

121	Eco-Niwas Samhita: Compliance Check Report
-----	--

1. Affordable High-Rise: Compliance Result

1.1. Building Envelope:

S.No.	Component	Mandatory Requirements	Calculated value	Points Achieved	Maximum Points
1	RETV(W/m ² .K)	NA	14.59	44	80
2	U-Value Roof(W/m².K)	NA	0.53	6	7
3	WFRop	Achieved	32.0	NA	NA
4	VLT %	Achieved	60.0	NA	NA

1.2. Building Services:

S.No.	Component	Mandatory Requirements	Calculated value	Points Achieved	Maximum Point
1	Exterior Lighting	NA		3	3
2	Basement Lighting	NA	-	2	3
3	Corridor Lighting	NA		3	3
4	Lift	NA		22	22
5	Pump	NA	-	11	14
6	Diesel Generator Sets	Achieved		NA	NA
7	Power Factor Correction	Achieved	-	NA	NA
8	Energy Monitoring System	Achieved	=	NA	NA
9	Electric Vehicle Supply Equipment	Achieved		NA	NA
10	Transformer	NA		6	6
11	Power Distribution Loss	Achieved		NA	NA
12	Car Parking Basement Ventilation	Achieved		NA	NA

1.3. Indoor Electrical End Use:

S.No.	Component	Mandatory Requirements	Calculated value	Points Achieved	Maximum Points
1	Indoor Lighting	NA		12	12
2	Ceiling Fan	NA		7	9
3	Cooling Equipment	NA		28	41

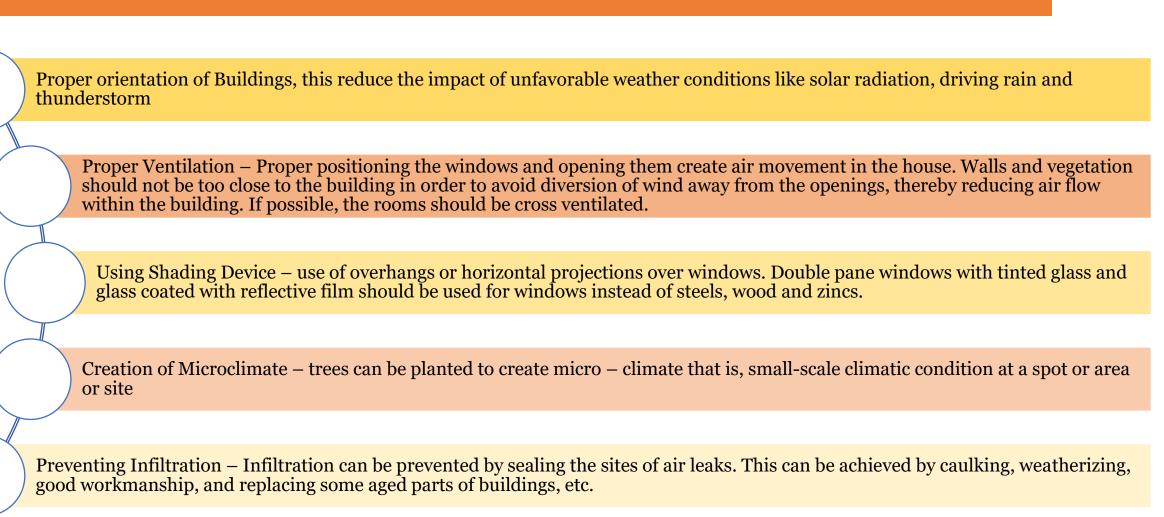
1.4. Renewable Energy System:

S.No.	Component	Mandatory Requirements	Calculated value	Points Achieved	Maximum Points
1	Solar Hot Water Requirements	NA		7	10
2	Solar Photovoltaic System	NA	-	5	10

Thermal Comfort Analysis

12

AFFORDABLE HOUSING PROJECT RECOMMENDATIONS



Recommendations

Recommendations

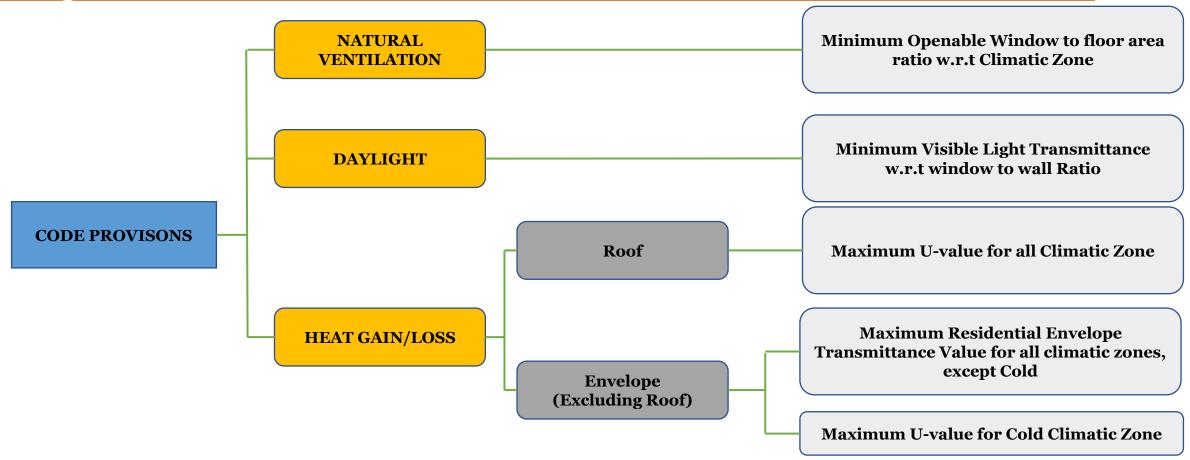
DAY 2

Lunch Break

DAY 2

Session 7

ENS 2018



Code Provisions by Eco Niwas Samitha for Thermal Comfort in Affordable Housing

SR.NO.	CODE PROVISONS	
1	Openable Window to Floor Area Ratio	
2	Visible Light Transmission	
3	Thermal Transmittance of Roof	
4	Residential Envelope Transmittance Value for Building Envelope (Except Roof) for four Climate Zones, namely, Composite Climate, Hot-Dry Climate, Warm-Humid Climate, and Temperature Climate	
5	Thermal Transmittance of Building Envelop (Except Roof) for Cold Climate	

Openable window to floor area ratio (wfr):

Openable window-to-floor area ratio (WFR) indicates the potential of using external air for ventilation. Ensuring minimum WFR helps in ventilation, improvement in thermal comfort, and reduction in cooling energy

The openable window-to-floor area ratio (WFR) shall not be less than the values given in Table. (Source Adapted from Bureau of Indian Standards (BIS). 2016. National Building Code of India 2016. New Delhi: BIS.)

Climatic Zone	Minimum WFR
Composite	12.50
Hot-Dry	10.00
Warm-Humid	16.66
Temperature	12.50
Cold	8.33

Openable window to floor area ratio (wfr):

VV	11	e	re	

EQUATION FOR WFR

$$\mathbf{WFR} = \frac{A_{openable}}{A_{carpet}}$$

WFR	Openable Window to Floor Area Ratio
A _{Openable}	Openable area (m²); it includes the openable area of all windows and ventilators, opening directly to the external air, an open balcony, 'verandah', corridor or shaft; and the openable area of the doors opening directly into an open balcony. Exclusions: All doors opening into corridors. External doors on ground floor, for example, ground-floor entrance doors or back-yard doors.
A _{Carpet}	carpet area of dwelling units; it is the net usable floor area of a dwelling unit, excluding the area covered by the external walls, areas under services shafts, exclusive balcony or verandah area and exclusive open terrace area, but includes the area covered by the internal partition walls of the dwelling unit

VISIBLE LIGHT TRANSMITTANCE (VLT):

Visible light transmittance (VLT) of non-opaque building envelope components (transparent/translucent panels in windows, doors, ventilators, etc.), indicates the potential of using daylight. Ensuring minimum VLT helps in improving day lighting, thereby reducing the energy required for artificial lighting

The VLT requirement is applicable as per the window-to-wall ratio (WWR) of the building. WWR is the ratio of the area of non-opaque building envelope components of dwelling units to the envelope area (excluding roof) of dwelling units.

EQUATION FOR VLT

$$WWR = \frac{A_{non_opaque}}{A_{envelope}}$$

VISIBLE LIGHT TRANSMITTANCE (VLT):

MINIMUM VISIBLE LIGHT TRASNSMITTANCE (VLT) REQUIREMENT:

The glass used in non-opaque building envelope components (transparent/translucent panels in windows, doors, etc.) shall comply with the requirements given in Table .(Source Bureau of Indian Standards (BIS). 2016. National Building Code of India 2016. New Delhi: BIS)

Window-to-wall Ratio (WWR)	Minimum VLT
0 - 0.30	0.27
0.31 - 0.40	0.20
0.41 - 0.50	0.16
0.51 - 0.60	0.13
0.61 - 0.70	0.11

THERMAL TRANSMITTANCE OF ROOF - U_{roof}:

Thermal transmittance (U_{roof}) characterizes the thermal performance of the roof of a building. Limiting the U_{roof} helps in reducing heat gains or losses from the roof, thereby improving the thermal comfort and reducing the energy required for cooling or heating.

Thermal transmittance of roof shall comply with the maximum U_{roof} value of 1.2 W/m² K.

THERMAL TRANSMITTANCE OF ROOF - U_{roof}:

	$\mathbf{U_{roof}}$	Thermal Transmittance of Roof (W/M².K)
EQUATION FOR U_{roof} : $U_{\text{roof}} = \frac{1}{A_{roof}} \sum_{i=0}^{n} (Ui \times Ai)$	$ m A_{roof}$	Total Area of the Roof (m²)
	$ m U_i$	Thermal Transmittance values of different roof constructions (W/ m^2 .K)
	$A_{\rm i}$	Areas of different Roof Constructions (m²)

RETV formula takes into account the following:

Residential envelope heat transmittance (RETV) is the net heat gain rate (over the cooling period) through the building envelope (excluding roof) of the dwelling units divided by the area of the building envelope (excluding roof) of the dwelling units. Its unit is W/m^2 .

Heat Conduction through opaque building envelope components (Wall, Opaque, panels in doors, windows, ventilators, etc.

Heat Conduction through non-opaque building, envelope components (transparent/translucent panels of windows, doors, ventilators, etc.)

Solar radiations through non-opaque building envelope components (transparent/translucent panel of windows, doors, ventilators, etc.)

$$RETV = \frac{1}{A_{envelope}} \times [\{a \times \sum_{i=1}^{n} (Aopaque \times Uopaque \times \omega_{i})\} + \{b \times \sum_{i=1}^{n} (Anon_{opaque} \times Unon_{opaque} \times \omega_{i})\} + \{c \times \sum_{i=1}^{n} A_{non_{opaque}} \times SHGCeq \times \omega_{i})\}]$$

RETV EUQATIONS TERMS

$ m A_{envelope}$	envelope area (excluding roof) of dwelling units (m ²). It is the gross external wall area (includes the area of the walls and the openings such as windows and doors).
${ m A_{opaque}}$	areas of different opaque building envelope components (m²)
$ m U_{opaque}$	thermal transmittance values of different opaque building envelope components (W/m^2 . K)
$A_{ m non ext{-}opaque}$	areas of different non-opaque building envelope components (m²)
$ m U_{non ext{-}opaque}$	thermal transmittance values of different non-opaque building envelope components (W/m².K)
$\mathrm{SHGC}_{\mathrm{eq}}$	equivalent solar heat gain coefficient values of different non-opaque building envelope components
$\omega_{ m I}$	orientation factor of respective opaque and non-opaque building envelope components; it is a measure of the amount of direct and diffused solar radiation that is received on the vertical surface in a specific orientation

The coefficients of RETV formula, for different climate zones, are given in Table

Climate Zone	a	b	c
Composite	6.06	1.85	68.99
Hot-Dry	6.06	1.85	68.99
Warm-Humid	5.15	1.31	65.21
Temperature	3.38	0.37	63.69
Cold		Not Applicable for RETV	

THERMAL TRANSMITTANCE OF BUILDING ENVELOPE:

U_{envelope,cold} takes into account the following

Thermal transmittance $U_{envelope,cold}$ characterizes the thermal performance of the building envelope (except roof). Limiting the $U_{envelope,cold}$ helps in reducing heat losses from the building envelope, thereby improving the thermal comfort and reducing the energy required for heating

Heat Conduction through opaque building envelope components (Wall, Opaque, panels in doors, windows, ventilators, etc.

Heat Conduction through non-opaque building, envelope components (transparent/translucent panels of windows, doors, ventilators, etc.)

THERMAL TRANSMITTANCE OF BUILDING ENVELOPE:

The Thermal transmittance of the building envelope (except roof) for cold climate shall comply with the maximum of 1.8 W/m^2 .K

EO	ттал		DOD
LU	$\cup A$]	LIUN	FOR

U_{envelope,cold}:

 $\frac{\mathbf{U}_{\text{envelope,cold}}}{\frac{1}{A_{\text{envelope}}} \sum_{i=1}^{n} (Ui \times Ai)}$

$ m U_{envelope,cold}$	thermal transmittance of building envelope (except roof) for cold climate (W/m 2 .K)
$A_{ m envelope}$	envelope area (excluding roof) of dwelling units (m ²). It is the gross external wall area (includes the area of the walls and the openings such as windows and doors)
U_{i}	thermal transmittance of different opaque and non-opaque building envelope components (W/m 2 .K)
A_{i}	area of different opaque and non-opaque opaque building envelope components (m²)

DAY 2

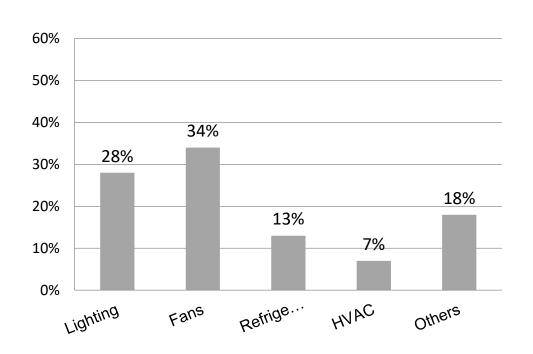
Tea Break

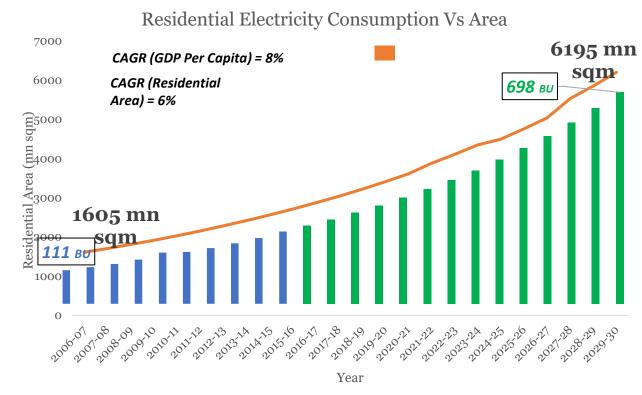
DAY 2

Session 8

8-A

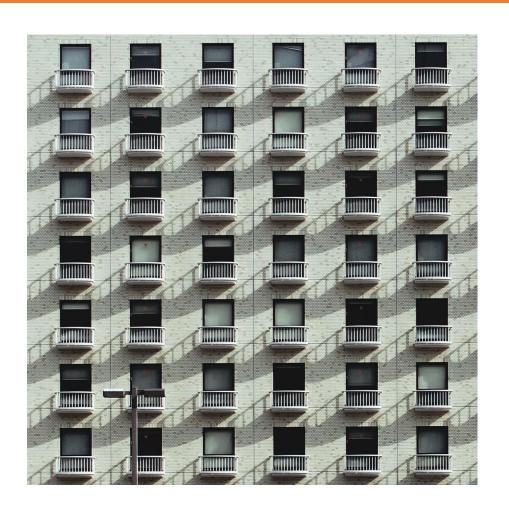
ENERGY EFFICIENCY LABEL FOR RESIDENTIAL BUILDINGS





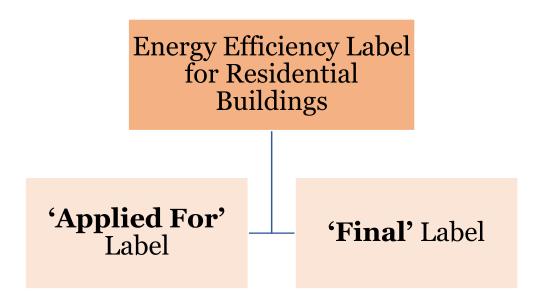
ELECTRICITY CONSUMPTION IN RESIDENTIAL BUILDINGS

Source: Energy Statistics 2018



Estimated Savings in Residential Buildings

Energy savings in BU (considering 2018-19 as base year)						
Year	Savings (BU)	CO2 million tonnes				
2019-20	4.9	4.0				
2020-21	3.1	2.5				
2021-22	7.6	6.2				
2022-23	12.1	9.9				
2023-24	19.5	16.0				
2024-25	28.8	23.6				
2025-26	43.3	35.5				
2026-27	45.8	37.6				
2027-28	55.8	45.8				
2028-29	69.6	57.1				
2029-30	82.0	67.2				
TOTAL	372.5	305.5				

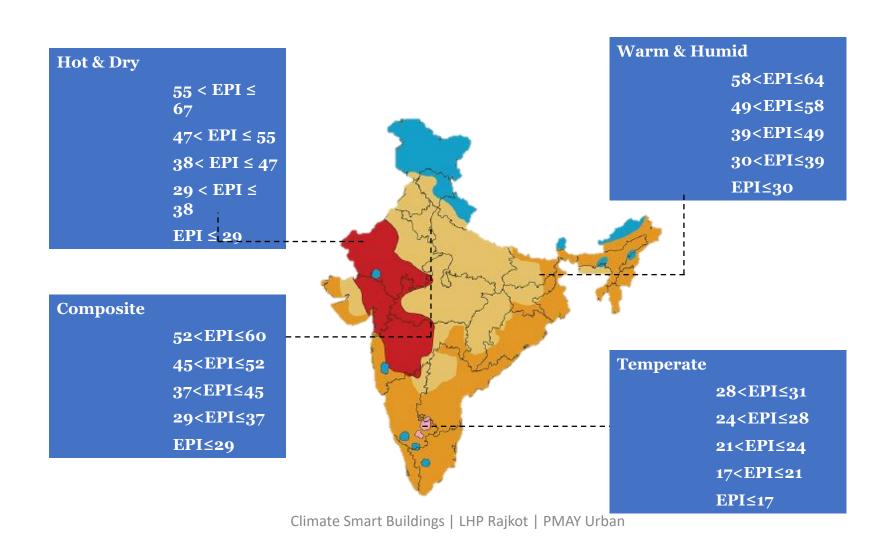


Scope & type of labelling Program

Label Criteria

There is **no minimum requirement** with respect to Area or Connected load (kW) for a dwelling unit to be covered under this labeling program.

- ✓ Star Rating awarded in the basis on EPI (**Energy Performance Index**)
- ✓ Energy Performance Index = Annual Energy Consumption (**kWh**)/Built up area (**m**²)
- ✓ BEE has prepared an **online platform** for the User of Label to apply for seeking an award of label under this program
- ✓ The online platform consists of a **Simulation-Based Tool** that will calculate the EPI of respective dwelling unit



Residential Building Star Rating Plan

Outline of the process for awarding BEE Star Label

- BEE Star Label for Residential Building:
- Applied For Label (specifically for developers or under construction residential buildings Voluntary)
- Final Asset Label

Preparation stage

User registration

Project/ property registration

Application processing

Application submission

Scrutiny of received application

Approval for label

Implementation stage

Label renewal

Label transfer

Changes in label awarded already

Uptake strategies

Monitoring & Verification

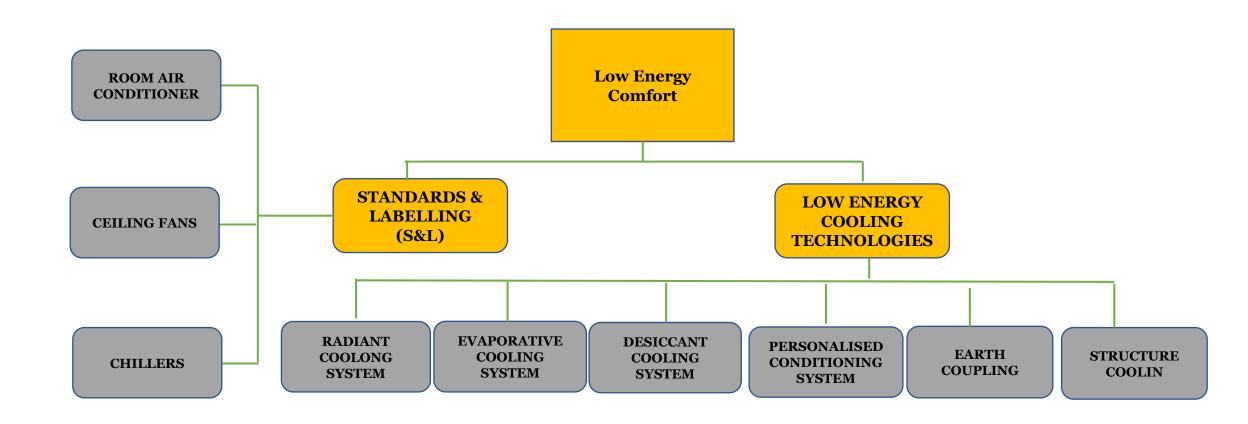
Verification audits

Data reporting for monitoring the progress

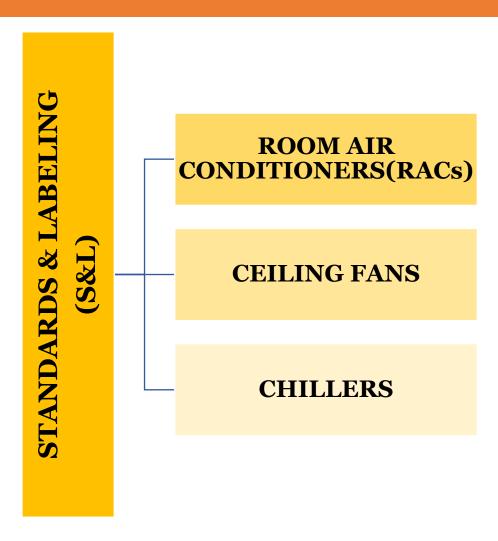
15

LOW ENERGY COMFORT SYSTEM IN

HOUSING

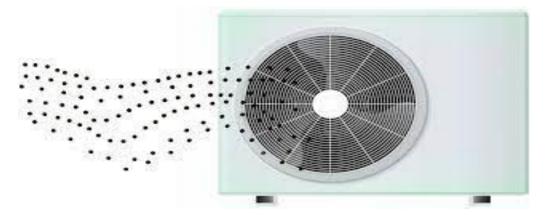


Low Energy Comfort System in Housing



S&L assists consumers in making educated decisions about appliance energy usage and promotes the market penetration of energy efficient appliances and equipment. BEE established the S&L program in 2006.

RACs are the only space cooling appliance under the mandatory labeling scheme. Ceiling fans and variable speed ACs are under the voluntary labeling scheme.



1 - ROOM AIR CONDITIONERS (RACs):

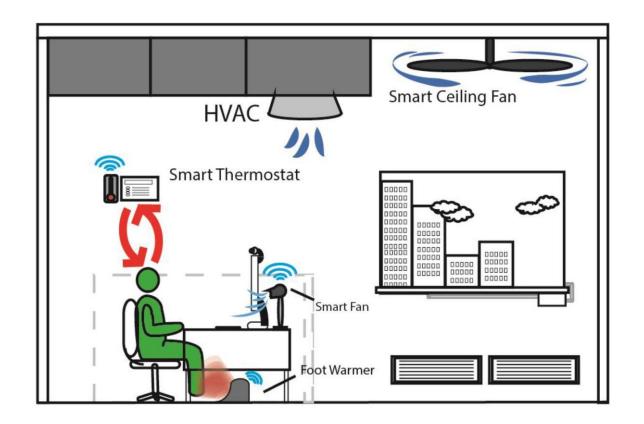
For variable capacity (inverter type) ACs, BEE established a new star grading technique called the Indian Seasonal Energy Efficiency Ratio (ISEER) in 2015.

This metric, which is based on the ISO-16358 standard with revisions to account for India's higher outdoor temperature ranges, will be used instead of the Energy Efficiency Ratio (EER).

ISEER takes into account the range of temperatures in Indian climate zones throughout the year to produce a more realistic estimate of cooling efficiency for the full year.

BEE star rating levels for inverter ACs effective from June 2015 through December 2019 (BEE, 2015)

STAR RATING	MINIMUM ISEER	MAXIMUM ISEER	
1 – Star	3.10	3.29	
2 – Star	3.30	3.49	
3 – Star	3.50	3.99	
4 – Star	4.00	4.49	
5 – Star	4.50	-	



2 - CELING FANS:

Ceiling fans consumed 6% of the energy consumed by residential buildings in 2000, and are predicted to consume 9% by 2020 due to an increase in the number of ceiling fans installed.

Fan effectiveness, rather than efficiency, is a phrase used to describe the volume of air provided per minute per unit of power (m³/minute/W) delivered by a ceiling fan.

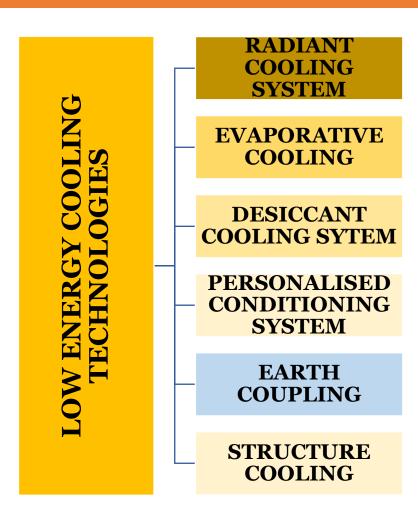
Both the BIS and the BEE give ratings to fans.

3 - CHILLERS:

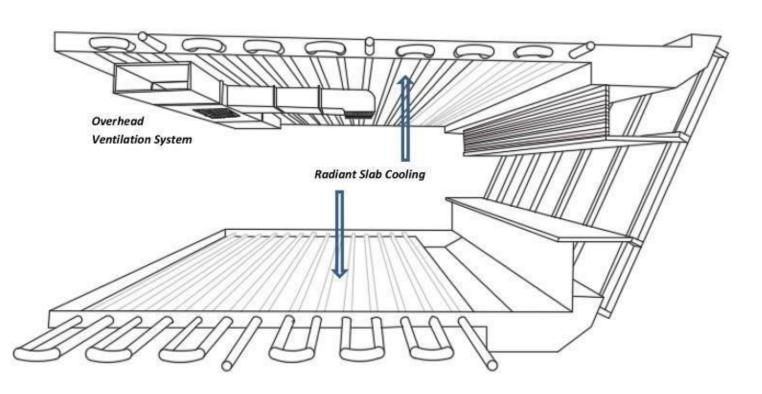
ECBC (version 2) sets minimum chiller performance efficiency based on Air-conditioning, Heating, and Refrigeration Institute (AHRI) standards that provide test circumstances more reflective of climate in the United States and Europe.

Recognizing the significance of the chiller standard, the ISHRAE has undertaken the responsibility of designing chiller test conditions. The standard, created collaboratively by ISHRAE and the RAMA, establishes a new set of rating and performance testing parameters (temperature, part load weightages, and fouling conditions) for both air and water cooled chillers.

ISHRAE has also created a standard for evaluating and testing variable refrigerant flow (VRF) systems.



These are energy-efficient cooling systems that are not commonly used. These can be utilized as stand-alone cooling systems or in conjunction with traditional air conditioning systems.



1 - RADIANT COOLING SYSTEM:

Radiant cooling makes use of actively cooled surfaces to enhance thermal comfort by transferring heat from the human body to the cooled surface via radioactive heat transfer.

Radiant-based HVAC systems absorb heat from the room, which is then removed by chilled water flowing through pipes installed in the floors, walls, or ceilings, or through externally fixed wall and ceiling panels.

The technique makes advantage of water's far higher thermal capacity than air.

2 - EVAPORATIVE COOLING:

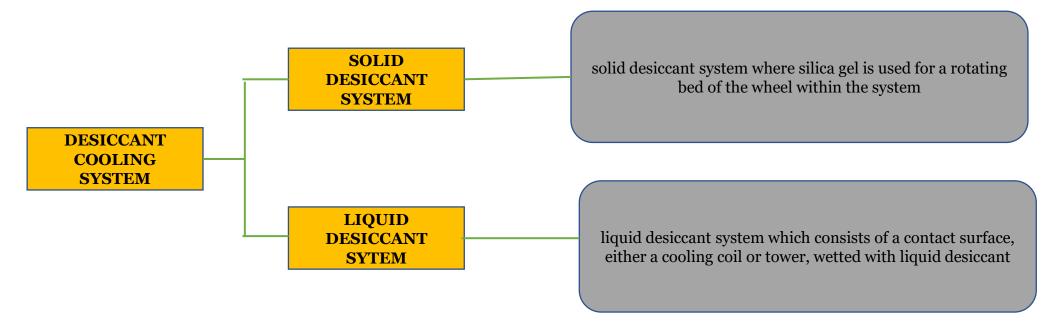
The evaporative cooling technology is based on heat and mass transfer between air and cooling water

DIRECT EVAPORATIVE COOLING

> is based on mechanical and thermal contact between air and water

INDIRECT EVAPORATIVE COOLING

is based on heat and mass transfer between two streams of air, separated by a heat transfer surface with a dry side where only air is cooling and a wet side where both air and water are cooling



3 - DESICCANT COOLING SYSTEM:

A desiccant is a substance, either liquid or solid, which absorbs water molecules from the air and dehumidifies it.

The desiccant system also improves the quality of indoor air. Integration with traditional HVAC systems to remove latent heat can reduce cooling and heating energy usage by up to 30% and 5%, respectively.

PERSONALISED CONDITIONING SYSTEM

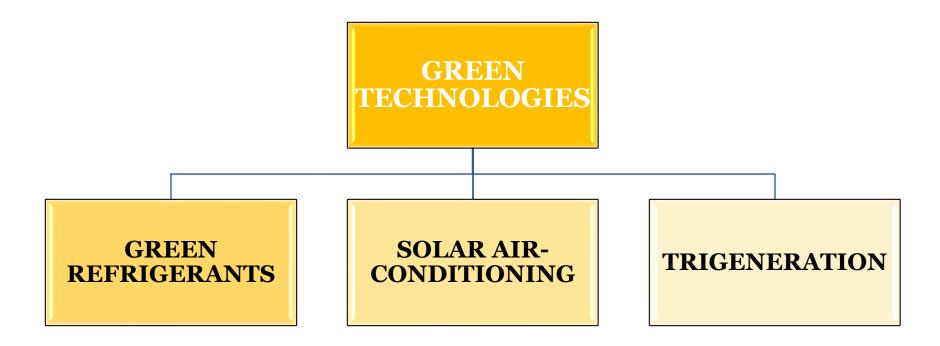
- A customized air-conditioning system at the office produces a microclimatic zone around a single occupant, ensuring that energy is only used where it is required.
- Because of its excellent localized energy utilization, this technology serves to improve thermal comfort for occupants while also reducing energy consumption.

EARTH COUPLING

- Due to the great thermal inertia of soil, the Earth maintains a relatively constant temperature just a few meters below the surface, which is less than the outside temperature in summer and higher in winter.
- By pumping or exchanging heat with the earth, geothermal technologies such as the Earth Air Tunnel Heat Exchanger (EATHE) and Ground Source Heat Pump (GSHP) utilize the earth's temperature stabilizing property to deliver central heating or cooling to a structure.

STRUCTURE COOLING

- By removing heat from the structure, structure cooling tries to lower the mean radiant temperature. This is accomplished by circulating water at room temperature through pipes implanted in slabs to drain heat from the building and prevent it from overheating. The larger thermal mass of water slows the transport of heat from the environment to the structure's innards.
- The heated water runs to the radiator, where it gives away the heat obtained and returns to the tank for recirculation, while the circulated water drains heat from the structure. Because it is a closed loop system, there is only one water requirement. There is no need to cold the water or use refrigerants; just the pump consumes energy.



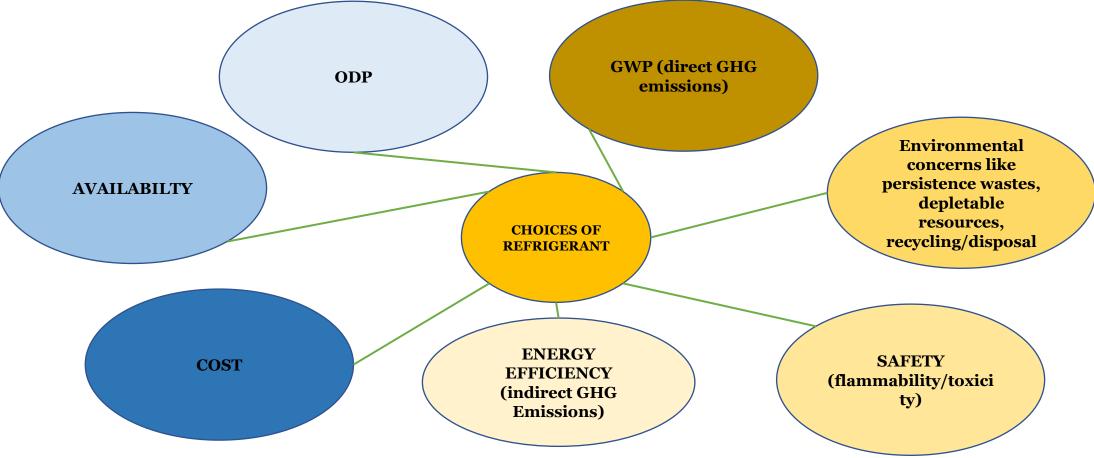
Green technology, such as RACs with green refrigerants, solar air-conditioning, and trigeneration, will have a significant influence on the environment if used wherever practical. India's energy security and contribution to minimizing climate change Changes in the climate.

1 - GREEN REFRIGRANTS:

A green refrigerant would have the benefits of natural refrigerants and also be energy efficient

Natural refrigerants have numerous advantages, including 0% ODP, a low GWP, participation in natural biogeochemical cycles, and the absence of permanent chemicals in the atmosphere, water, or biosphere. Carbon dioxide, ammonia, and hydrocarbons like propane, propene, and isobutene are among them. Natural refrigerants, like as isobutene in residential freezers and ammonia in big cooling systems, are commonly employed in various RAC applications.

One of the most significant issues with hydrocarbon-based natural refrigerants is the flammability, which can be mitigated by steps such as the use of appropriate materials, the selection of safe components, and operator training. CO2, a natural refrigerant, is inefficient in terms of energy use. When choosing a refrigerant, keep these considerations in mind. (2017, Green-cooling-initiative.org)

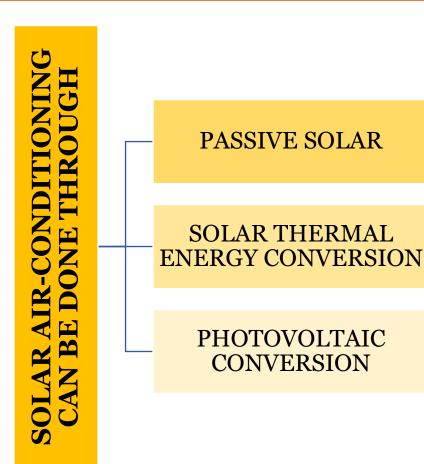


A good refrigerant should be nonflammable, non-toxic, and odorless, with a very low GWP and no risk for ozone depletion. Many next-generation refrigeration options are non-flammable and have an ultra-low GWP, making them suited for chiller applications with bigger refrigerant charge sizes, or non-flammable refrigerant mixes with a moderate GWP of less than 750.

The quickest way to accomplish environmental goals is to use nonflammable, low-GWP refrigerants in high-performance products.

Climate Smart Buildings | LHP Rajkot | PMAY Urban

TYPES OF REFRIGERANTS AND THEIR GWP (ASSIMILATED FROM AEEE's SECONDARY RESEARCH						
REFRIGERANT	GWP	ENERGY EFFICIENCY	COMPANIES	MARKET STATUS	COST	
HCFC-22	High (1800)	High	All Phasing Out	GHG, scheduled for phase out under Montreal protocol	High	
HFC-410a	High (1923)	Low	LG, Samsung, GE, Carrier	GHG, Ozone Safe	High	
HFC-32	Medium (675)	High	Daikin, Fujitsu, Hitachi, Mitsubishi, Panasonic, Toshiba	Ozone Safe, Mildly flammable	Low	
HC-290	Very Low (<5)	High	Godrej	Low GWP, best available for ozone safe in small room AC, highly flammable	Low	
HFC BLENDS (DR7, L41, L20)	Medium (300-450)	Medium	DuPont, Honeywell	Low GWP, Low Flammable	Medium	
HFOs	Very Low (<4)	Very High	In Research Phase	Environmental friendliness, cost- effectiveness	Low	

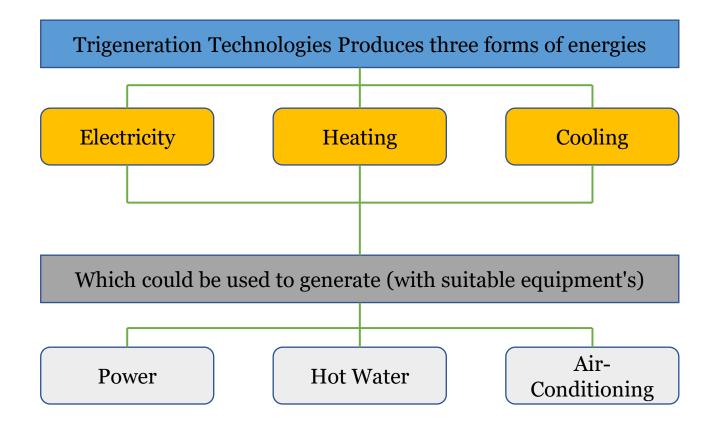


2 - SOLAR AIR-CONDITIONING:

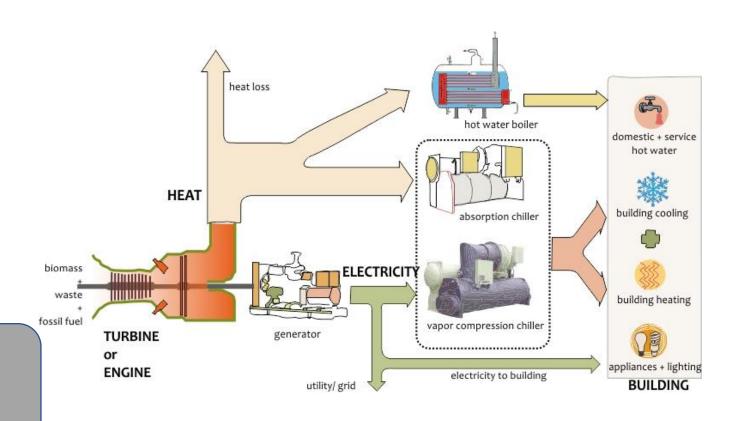
Solar air-conditioning refers to any airconditioning system that uses solar power

The vapor absorption method is used to provide cooling in thermally operated chillers. Instead of employing compressors, desorption is used to enhance the refrigerant's vapor pressure and temperature. Chilled water is produced by thermally driven chillers, which is subsequently utilized to cool hot or warm areas of a building.

Solar absorption chillers have very cheap operating and maintenance expenses, and they use very little electricity. Solar airconditioning has a current market potential of over 0.7 million TR and is growing at a pace of around 17% per year.



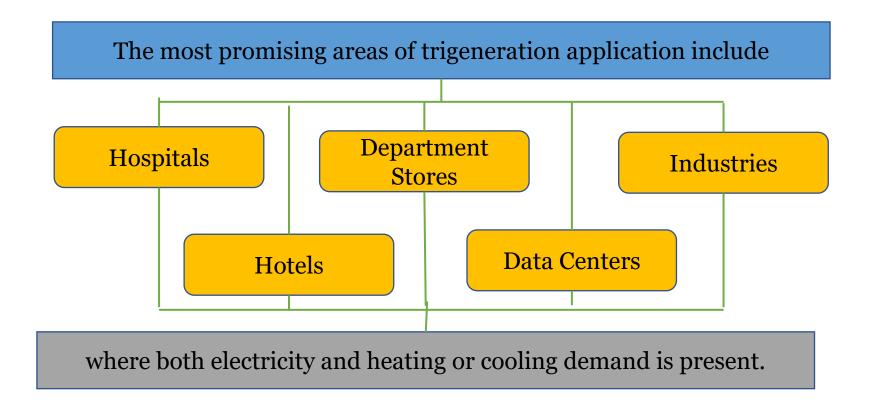
3-TRIGENERATION:



Absorption chillers can employ heat absorbed from waste burning, power generation with generators, or heat generated by solar panels to generate chilled water.

> By utilizing a waste heat recovery system at the end user site, trigeneration systems can achieve great efficiency with no transmission losses.

> > If they can sell to the grid, they could potentially help India meet peak power demand and avoid harmful power outages.



8-B

INDIAN & INTERNATIONAL BEST PRACTICES

SIERRA's eFACiLiTY® Green Office Building, Coimbatore

Location Coimbatore, Tamil Nadu

• Coordinates 11° N, 77° E

Occupancy Type Office

• Typology New Construction

Climate Type Warm and Humid

Project Area 2,322 m2

Grid Connectivity Grid Connected

• EPI 56 KWh/m2/

Climate Responsive Design

- Long facades face towards east and west- Window Wall Ratio (WWR) is less than 40%
- External shading devices and high-performance reflective glazing-harvest 86% daylight

Landscaping and Water Efficiency

- Ensuring 100% rainwater harvesting and 100% wastewater treatment to tertiary standards- Zero discharge
- Use of native drought-tolerant species- Landscape water demand reduce 40%

Air-Conditioning

- Variable Refrigerant Flow system- Energy Efficiency Ratio (EER) of 13.85
- Smart Sensors intelligently maintain temperature and fresh air supply

Indoor Air Quality

- Triple filtering & Demand Controlled Ventilation aided by CO2 sensors
- Real-time IoT sensors- levels of volatile organic compounds, humidity, and particulate matter
 2.5 & 10

Artificial Lighting and Controls

- 100% LED lights- 0.26 W per sq ft
- Sensor-activated passage lights, occupancy sensors, and lux sensors

Water Efficiency

89% water savings are achieved using waterless urinals, high efficiency sensor faucets, reuse of treated water for flushing and reuse of stored rainwater for domestic use.

Sequencing Batch Reactor (SBR) based STP System, rainwater filtration, Raw water treatment UV treatment etc.

Energy Monitoring

Renewable Energy

60 KW rooftop solar PV with the automatic sprinkler cooling system- meets 80% of the energy demand and about 33% of the energy use further reducing the EPI to 18.8 KWh/m2/year

Industrial building

• Location: Lodsi, India

• Year:2019

• Area: 1000 Sqft

• Architects: Morphogenesis

- Purpose: manufacturing facility for a modern skincare company
- EPI (energy performance index) of 35kWh/m2/year
- https://www.archdaily.com/

Climate Responsive Design

- The built form draws inspiration from the traditional Garwahli 'kholi' (house).
- A rectilinear volume-oriented along the East-West axis has been planned with a central entry that divides the facility into two parts.
- The functions that require a cooler environment (herb grinding, packaging, and storage) are located on the ground floor, whereas the preparatory functions with high internal heat gain are located on the upper floor.
- The North-South-oriented butterfly roof form, reminiscent of the traditional roof not only provides a modern aesthetic but also permits the use of large openable windows that take advantage of the prevailing Northeast and Southeast winds for ventilation further providing 80% naturally daylit spaces.

Renewable Energy

Solar roof generating 50kWp

Climate Responsive Design

- The built form draws inspiration from the traditional Garwahli 'kholi' (house).
- A rectilinear volume-oriented along the East-West axis has been planned with a central entry that divides the facility into two parts.
- The functions that require a cooler environment (herb grinding, packaging, and storage) are located on the ground floor, whereas the preparatory functions with high internal heat gain are located on the upper floor.
- The North-South-oriented butterfly roof form, reminiscent of the traditional roof not only provides a modern aesthetic but also permits the use of large openable windows that take advantage of the prevailing Northeast and Southeast winds for ventilation further providing 80% naturally daylit spaces.

Renewable Energy

Solar roof generating 50kWp

Unnati Office

Location Greater Noida, Uttar Pradesh

Coordinates
 29° N, 78° E

Occupancy Type: Office, Private

Typology New Construction

Climate Type Composite

Project Area 3,740 m2

Date of Completion- 2018

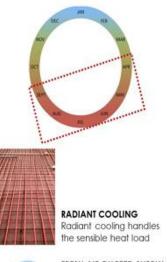
Grid Connectivity Grid-connected

■ EPI 60 kWh/m2/yr.

https://www.archdaily.com/

Ground Floor Plan - Office layout

It is the first building in India to be certified Platinum under LEED v4 BD+C: NC rating in 2018. The building performs 59% better than a conventional office building in the region, and 40% of the building energy consumption is met through on site renewable energy generation.



Orientation

The three-storey building is a cuboid with a central courtyard. It is oriented northeastsouthwest, with the core areas distributed in the east and the west orientations

Landscaping

The landscape is a mix of existing and new vegetation. 30% of the site is un-built, of which 25% is covered with shrubs and trees.

Daylighting

90% of the office spaces, including the core and service areas, receive uniformly distributed daylight. This can be attributed to the form, central courtyard, shallow floor plates, appropriate sizing and distribution of openings. All the windows have box shading that prevents glare.

Building Envelope and Fenestration

Truss reinforced insulated concrete panels (TRIC) used for the exterior walls are 25 mm concrete (AAC), 60 mm expanded polystyrene (EPS), and 25 mm concrete (AAC), and 10 mm plaster.

The green roof insulation materials are 13 mm extruded polystyrene insulation and a 300 mm layer of green roof soil substrate.

Optimized Energy Systems / HVAC system

The building has a hybrid HVAC system which is a combination of water-cooled air handling units and ceiling-embedded radiant cooling system.

Cooling load distribution of the system is such that 55% of the load is met by the radiant cooling system and 45% by AHUs.

Renewable Energy

The building draws 40% of its energy from the roof-top PV plant.

The installed 100 kW solar PV generates 146 MWh/yr.

Shenzhen Institute of Building Research (IBR) Headquarters

Location Shenzhen, China

• Coordinates 39° N, 116° E

• Occupancy Type Office + research labs

• Typology New Construction


• Climate Type Humid subtropical

• Project Area 18,169 m2

Grid Connectivity Grid Connected

• EPI 63 kWh/m2/yr

https://www.hpbmagazine.org/

Roof

Type Roof garden (green roof) shaded with a PV canopy Walls Type Insulated concrete panel with aluminum cladding Glazing Percentage Varies by orientation from 30% to 70% Windows-Effective U-factor for Assembly 0.35 Btu/h·ft°F Solar Heat Gain Coefficient (SHGC) 0.4 Visual Transmittance 0.45 Acoustic Isolation Performance 60 dbA

Wind:

Natural ventilation in all the office spaces allows for direct contact with nature, and uses 30% less air conditioning

Light:

Daylight for all the office spaces means no artificial lighting is needed during the day and provides views of the surrounding mountains from all of the workstations

Land:

A vertical landscape distributed throughout the building doubles the area available for greenery compared to the building's original footprint. The roof garden, "sky

garden," and patio garden all help restore the ecological balance of the building site.

Materials

Concrete with high-percent recycled material, wood products with 10% recycled materials. Construction materials sorted and collected for recycling. Use of local and native materials. Low-emission interior finishes.

HVAC.

Water-loop heat pump, water-source heat pump, temperature and humidity are independently controlled, and high-efficiency and energy-saving air conditioning.

Bayalpata Hospital

• Location: Achham Nepal

• Coordinates: 29° N, 81° E

• Occupancy Type: Medical Complex

• Climate Type- Subtropical (due to elevation)

• Project Area: 4,225 m2

Date of Completion 2019

Grid Connectivity: Grid-connected

• EPI- 10 kWh/m2/yr

Climate Responsive Architecture and Strategies:

The architecture maintains a vernacular scale through setbacks, gabled roofs, and low-cost heat-storing materials.

The complex includes low-rise one- and two-story structures organized around landscaped courtyards. The structures are heated and cooled passively (with the exception of the operating theatre and laboratories that are mechanically conditioned).

Heating, Cooling and Ventilation Design

The structures comprises of massive rammed earth walls with insulated roofs. Material with thermal mass retains daytime heat gain in winter, while keeping the interiors cool by preventing overheating during summer.

The cross-breezes through courtyards, aided by clerestory ventilation and ceiling fans, promote natural ventilation and improve comfort conditions.

Daylighting

Inside the buildings, tall narrow windows and south-facing series of glazed clerestories brings in natural daylight reducing the need for artificial lighting.

Material Palette

Soil from the site was mixed with 6% cement content to stabilize the earth for better durability and seismic resistance. Reusable, plastic lock-in-place formwork facilitated faster construction, while local stone was used for foundations, pathways, and retaining walls.

Nowon Energy Zero House (EZ House)

Location: Seoul, South Korea

Coordinates 37° N, 127° E

• Occupancy Type- Multi-unit housing complex

Climate Type Continental

• Project Area 17,652 m2

Grid Connectivity Grid Connected

https://www.schoeck.com/en/case-studies/nowon-energy-zero-house-ez-house

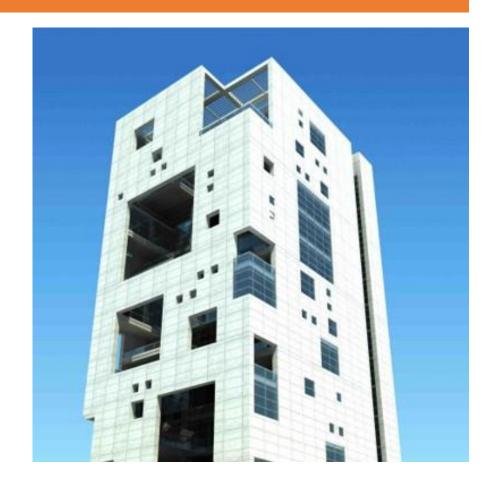
- Nowon EZ House, Korea's first zero-energy multi-unit housing complex, is the result of the project "Zero Energy Housing Activation Optimization Model Development and Demonstration Complex Development"
- Nowon EZ House was built using the highest level of passive technology and materials in Korea, some of which were the first to be used in the country.
- Structural thermal break solutions Schöck Isokorb® XT type K and XT type Z have been applied to prevent the thermal bridges in the balcony area. Thanks to the new technologies, EZ House is aimed to maintain a temperature of 20°C to 22°C in winter and 26°C to 28°C in summer without any heating or cooling

Mobil House

• Location Dhaka

• Coordinates 23.8° N, 90.4° E

• Occupancy Type: Office


• Climate Type Tropical wet and dry climate

• Project Area 6,673 m2

Date of Completion Oct 2019

Grid Connectivity Grid-connected

• EPI (kWh/m2/yr)- 58 kWh/m2/yr

Site Layout & Planning

Due to size constraints of the site, the green cover on site is minimal. However, significant foliage has been incorporated within the large terraces distributed throughout the building. Potted plants and vertical gardens compensate for the lack of surface green cover.

Climate Responsive Design

The most striking feature of the building includes the landscaped and shaded terraces. These act as thermal buffers for the interior spaces.

Form and Massing

The building mass has been oriented such that circulation elements like lift core and staircases are situated along the West façade. This shields the regularly occupied spaces like offices and reception from the solar gains from the west façade. The northeast façade, with less solar gain potential, incorporates large windows to allow daylight and outdoor views.

Facade and Envelope

The envelope is made of 300 mm thick concrete walls, leading to high thermal mass which shields the buildings from heat gain during the daytime. The deep building terraces and courtyards enhance biophilia and create shaded outdoor breakout spaces that remain cool throughout the day. In addition to the walls, the windows – double-glazed panels with low emissivity and a U-value 1.1 W/m2k – also reduce heat gain. The glazing has a shading coefficient of less than 0.25, leading to further reduction in solar heat gain.

Daylight Design

The building form is optimized to let in daylight, blocking solar heat gain. This is done through the deep terraces of the building which provide shading to the north-east façade. This façade, with its row of large windows, also lets in plenty of daylight. A significant number of occupants have access to daylight and views to the outside

DAY 2

Q & A Session

DAY 2

Vote of Thanks

THANK YOU