

CLIMATE SMART BUILDINGS

DAY 1

01

INTRODUCTION

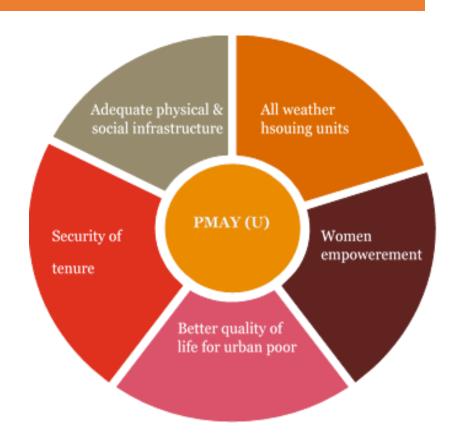
Project Objectives

Pradhan Mantri Awas Yojana - Urban

11.2 million dwelling units are being constructed

7.35 lakh crores investment

To lakh occupants in the EWS/LIG category benefitting


Construction of affordable housing in Partnership with Public & Private Sectors

Promotion of affordable Housing through Credit Linked Subsidy

Slum rehabilitation with private developers using land as a resource

Subsidy for beneficiary-led individual house construction/enhancement. (ISSR)

Problems addressed through cafeteria approach by mission

Key features of PMAY-U projects

GIZ

GIZ is an international cooperation enterprise for sustainable development which operates worldwide, on a public benefit basis. GIZ is fully owned by the German Federal Government, GIZ implement development programs in partner country on behalf of the German Government in achieving its development policy objectives.

For over 60 years, the Deutsche Gesellschaft fürInternationale Zusammenarbeit (GIZ) GmbH has been working jointly with partners in India for sustainable economic, ecological, and social development. Currently, GIZ has over 330 employees in India, of whom 85 per cent are national personnel.

About the project-"Climate Smart Buildings (CSB): Establishment of the Cluster Cell in Ranchi, Jharkhand under Global Housing Technology Challenge-India (GHTC-India)"

States and UTs in East Cluster for establishing the Cell:

Jharkhand

Bihar

Odisha

West Bengal

The climate smart buildings project intends to address the majority of gaps identified in the affordable housing sector

- By introducing of thermal comfort & climate resilience in the Local Government framework through Byelaws as an overarching objective.
- In order to achieve this objective, activities like documentation of LHP construction process from a sustainability perspective, knowledge transfer & capacity building through LHPs, performance monitoring & demonstration of thermal comfort in selected housing projects among others.

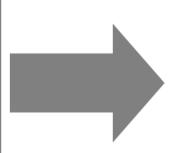
Key Components of the project

WP1: Facilitate implementation and monitoring of Light House Projects (LHPs)

WP 2: Technical assistance to enhance thermal comfort in upcoming Demonstration Housing Projects (DHPs) and ARHCs (Affordable rental housing complexes) and other Public/Private housing projects in West Cluster

WP 3: Inclusion of climate resilience and thermal comfort requirements in building byelaws and Local Government framework in West Cluster

WP 4: Capacity development of Govt officials and private stakeholders on thermal comfort in the West Cluster



Expected outcomes

Strategic Intent

- Seamless implementation of LHPs
- Assist in knowledge transfer through documentation of technologies used & implementation of LHPs
- Technical assistance to achieve thermal comfort in demonstration projects
- Support the implementation of thermal comfort provision in state legislature
- Capacity buildings around thermal comfort & sustainable construction

Outcome

- Successful model for the implementation & documentation of LHPs
- Databank of technologies, relevant materials in the state analyzed around various relevant parameters
- Replicable models for thermally comfortable affordable houses in Gujarat (climate sensitive to 3 climatic conditions in the state)
- Thermal comfort provisions mandated by the law
- Better grasp of thermal comfort & sustainability in general among the concerned stakeholders & general public too

02

LHP INTRODUCTION

Light House Projects

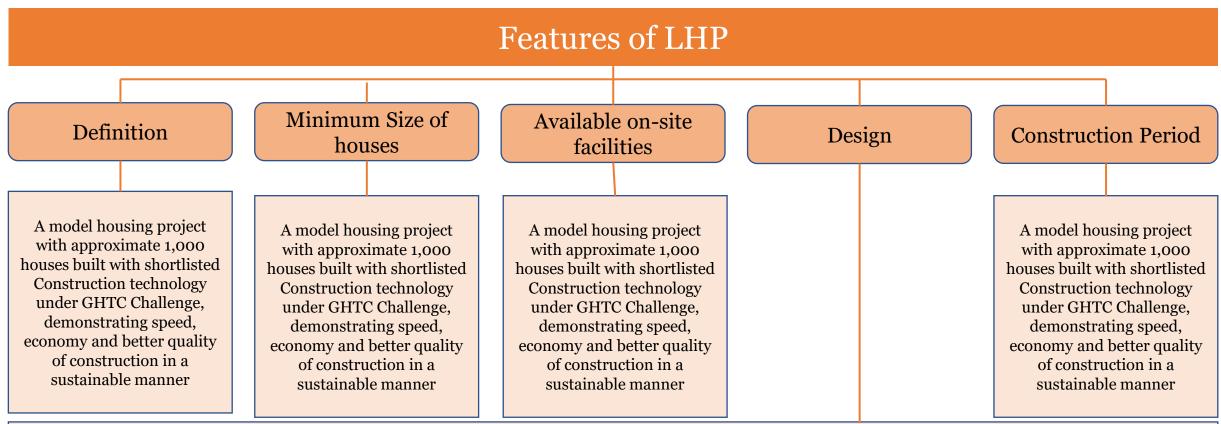
LHPs are model housing projects with houses built with shortlisted alternate technology suitable to the geo-climatic and hazard conditions of the region, an initiative under the Climate Smart Buildings Programme.

These projects demonstrate and deliver ready to live houses with speed, economy and with better quality of construction in a sustainable manner.

Currently the LHPs' are being implemented in six states (Uttar Pradesh, Gujarat, Madhya Pradesh, Gujarat, Jharkhand, and Tripura) of India under Global Housing Technology Challenge (GHTC) – India. These projects will be made up of modern technology and innovative processes and reduce the construction time and make a more resilient, affordable, and comfortable house for the poor.

Details of LHP Projects along with construction Technology Used

LHP Location	TECHNOLOGY SELECTED	NUMBER OF HOUSES TO BE CONSTRUCTED
Ranchi, Gujarat	Monolithic Concrete Construction using Tunnel Formwork	1144
Indore, Madhya Pradesh	Prefabricated Sandwich Panel System	1024
Chennai, Tamilnadu	Precast Concrete Construction System – Precast Components Assembled at Site	1152
Ranchi, Jharkhand	Precast Concrete Construction System – 3D Volumetric	1008
Agartala, Tripura	Light Gauge Steel Structural System & Pre-engineered Steel Structural System	1000
Lucknow, Uttar Pradesh	PVC Stay in Place Formwork System	1040



- Designed as per the dimensional requirements mandated in the National Building Code (NBC) 2016.
- Design in concurrence with existing centrally sponsored schemes and Missions such as Smart Cities, AMRUT, Swachh Bharat (U), National Urban Livelihood Mission (NULM), Ujjwalla, Ujala, Make in India, etc.
- Structural details designed considering durability and safety requirements of applicable loads including earthquakes and cyclone and flood as applicable confirming to applicable Indian/International standards.
- Design of Cluster involves the possibility of innovative system of water supply, drainage and rainwater harvesting, renewable energy sources with special focus on solar energy.

DAY 1

Tea Break

DAY 1

Session 1

03

THERMAL COMFORT

"Thermal comfort is the condition of the mind which expresses satisfaction with the thermal environment"

- ASHRAE

Importance of Thermal Comfort

1. You can increase morale and productivity while also enhancing health and safety by regulating thermal comfort. Because their capacity to make decisions and/or do manual tasks deteriorates in excessively hot and cold conditions, people are more prone to behave unsafely

2

People adjust their behavior to cope with their thermal environment, such as by adding or removing clothing, changing their posture unconsciously, selecting a heating source, moving closer to or farther away from cooling/heating sources, and so on.

3

When this option (removing a jacket or moving away from a heat source) is gone, issues develop since people are no longer able to adjust. People are unable to adapt to their environment in some cases because the environment in which they work is a product of the processes of the task they are doing.

THERMAL ENVIRONMENTS CAN BE DIVIDED LOOSELY INTO THREE BROAD CATEGORIES:

THERMAL COMFORT

Broad satisfaction with the Thermal Environment i.e. most people are neither too hot nor too cold.

THERMAL DISCOMFORT

People start to feel uncomfortable i.e. they are too hot or too cold, but are not made unwell by the conditions.

THERMAL DISCOMFORT

Heat stress or cold stress, is
where the thermal
environment will cause
clearly defined harmful
medical conditions, such as
dehydration or frost bite

THERMAL DISCOMFORT

Factors affecting Thermal Comfort

PHYSICAL FACTORS

PHYSICAL FACTORS

•Air Temperature

Floor Surface Temperature

•Mean Radiant Temperature

•Relative Humidity

•Radiant Temperature Asymmetry

•Air Speed

<u>AIR TEMPERATURE – the temperature of the air surrounding a body</u>

The ideal temperature for sedentary work is usually between 20°C and 26°C

Workers who conduct strenuous labor frequently prefer a cooler environment.

When deciding on an indoor temperature, keep the outside temperature in mind.

The temperature within a workplace that is considered "comfortable" is determined by the outside temperature.

<u>RADIANT TEMPERATURE – the heat that radiates from a warm object</u>

Heat can be generated by equipment, which raises the temperature in a specific region.

Heat lamps, spot lighting, skylights, and other heat-producing sources are examples of heat-producing sources.

Even a tiny room with a few workers can see a temperature spike.

PHYSICAL FACTORS

<u>AIR VELOCITY - the speed of air moving across the worker</u>

Because people are sensitive to air movement, air velocity is a major determinant in thermal comfort assessments.

It's best if the air flow rate is between 0.1 and 0.2 m/s.

Little air movement or air that is still or stagnant in indoor environments may cause feelings of fatigue.

It may help to cool workers in a hot setting if the air is colder than the environment, but it may bring further pain to workers in a cool atmosphere.

HUMIDITY – the amount of evaporated water in the air

Humidity in interior spaces varies widely and is influenced by the type of plant utilized, such as those that produce steam.

Air-conditioning can easily attain ideal relative humidity values of 40 percent to 70 percent. On warm or hot humid days, relative humidity in non-air-conditioned workplaces, or where outdoor climatic conditions influence the internal thermal environment, can be more than 70%.

When the humidity is excessively high, it causes discomfort (heavy sweating, weariness, and a sense of 'airlessness,' for example).

PHSYIOLOGICAL FACTORS

CLOTHING LEVEL

METABOLIC RATE

Because it affects heat loss and, as a result, the thermal balance, the amount of thermal insulation worn by a person has a significant impact on thermal comfort. Layers of insulating clothing keep a person warm or cause overheating by preventing heat loss. The better the insulating ability of a garment, the thicker it is in general. Air movement and relative humidity can reduce the insulating effectiveness of clothing, depending on the type of material it is constructed of.

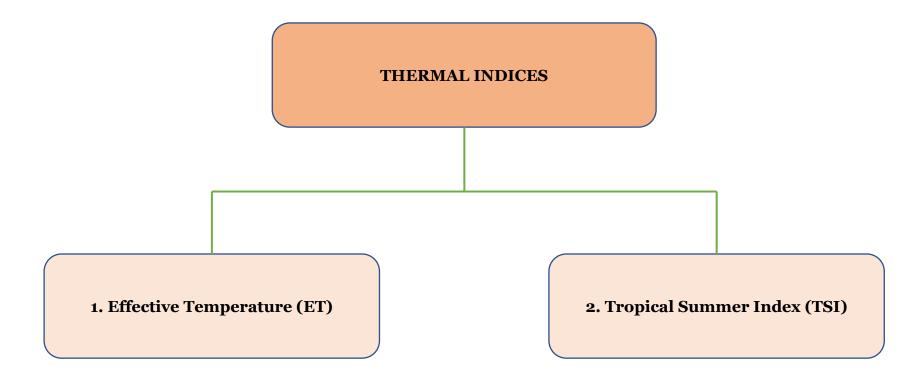
The rate at which chemical energy is converted into heat and mechanical effort by metabolic activities within an organism, commonly measured in units of total body surface area. People have different metabolic rates that can fluctuate due to activity level and environmental conditions.

CLOTHING	Clo
T-shirts, shorts, Light socks, Sandals	0.30
Shirt, Trousers socks, Shoes	0.70
Jacket, Blouse, Long skirt, stockings	1.00
Trousers, Vest, Jacket Coat, Socks Shoes	1.50

CLOTHING LEVELS & INSULATION

ACTIVITY	Met
Seated, Relaxed	1.0
Sedentary Activity (office, dwelling, school, laboratory)	1.2
Standing, Light Activity (shopping, laboratory, light industry)	1.6
Standing, Medium activity (shop assistant, domestic work, machine work)	2.0

METABOLIC RATE



Thermal Comfort Indices

Two of the thermal indices which find applications for hot environments are described as follows.

• 1 - Effective Temperature

- The temperature of still, saturated air at which the same amount of heat is released is known as the effective temperature as well as a general influence on comfort the atmosphere is being investigated.
- Temperature, humidity, and other factors the same thermal output is produced by the same wind velocity. A person's sensations are assumed to have a temperature that is effective.

Initially two scales were developed

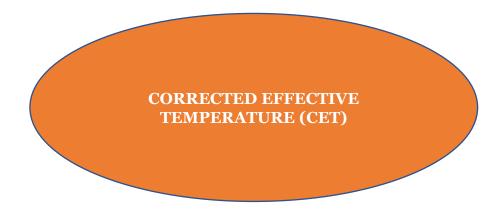
Basic Scale

one of which referred to men stripped to the waist and called the basic scale.

Normal Scale of Effective Temperature

The other applies to men fully clad in indoor clothing and called the normal scale of effective temperature. B

The same effective temperature is defined as a combination of temperature, humidity, and wind velocity that produces the same thermal experience in an individual.



The use of globe temperature reading instead of the air temperature reading to make allowance for the radiant heat.

The scale was compiled only for men either seated or engaged in light activity.

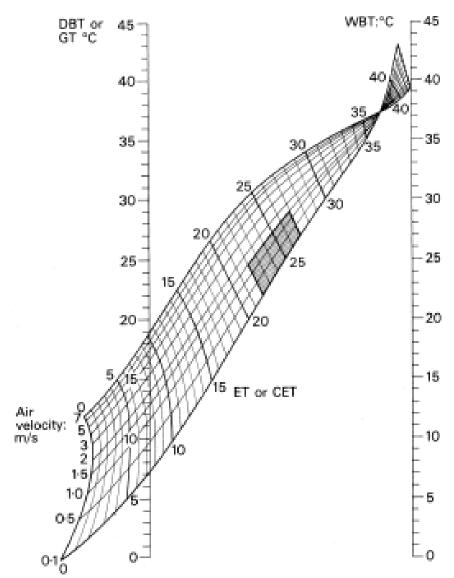


Figure represents the Corrected Effective Temperature (CET) Nomogram

2 - Tropical Summer Index

The TSI is defined as the temperature of calm air at 50% relative humidity which imparts the same thermal sensation as the given environment .The 50% level of relative humidity is chosen for this index as it is a reasonable intermediate value for the prevailing humidity conditions.

Mathematically, TSI (°C) is expressed as

 $TSI = 0.308tw + 0.745tg - 2.06\sqrt{V + 0.841}$

Where,	
Tw	Wet bulb temperature in °C
Tg	Globe temperature in °C
V	Air speed in m/s

The ranges of environmental conditions and TSI covered in this study are:

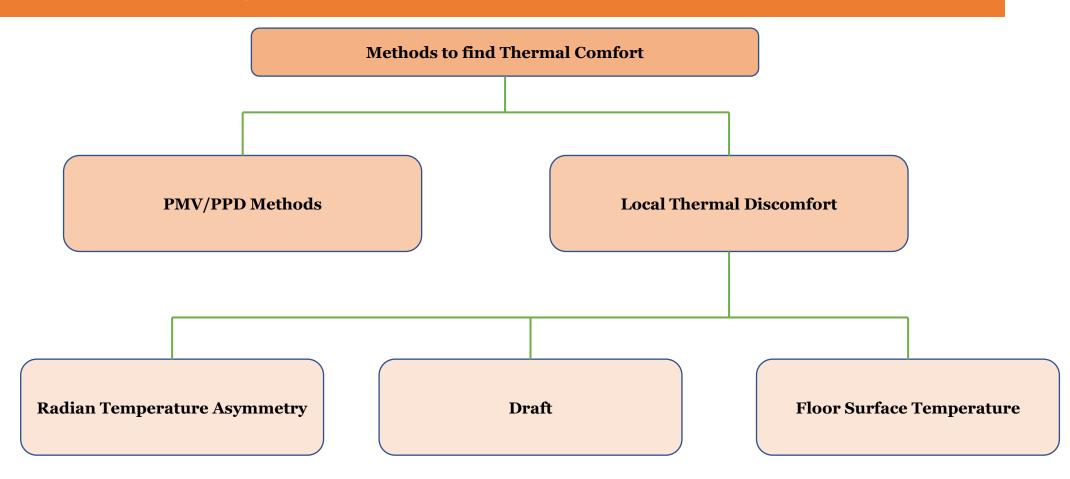
Globe Temperature	20-42 °C
Wet Bulb Temperature	18-30 °C
Air Speed	0-2.5 m/s
TSI	15-40 °C

The thermal comfort of subjects was found to lie between TSI values of 25 and 30°C with optimum conditions at 27.5°C.

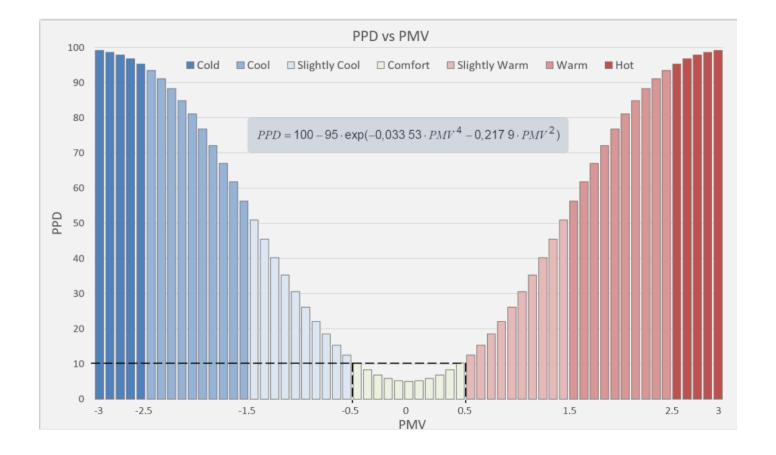
REDUCTION IN TSI VALUE FOR VARIOUS WIND SPEED

Air Speed (m/s)	Decrease in TSI (°C)
0.5	1.4
1.0	2.0
1.5	2.5
2.0	2.8
2.5	3.2

The warmth of the environment was found tolerable between 30 and 34°C (TSI), and too hot above this limit. On the lower side, the coolness of the environment was found tolerable between 19 and 25°C (TSI) and below 19°C (TSI), it was found too cold.



Methods to find Thermal Comfort

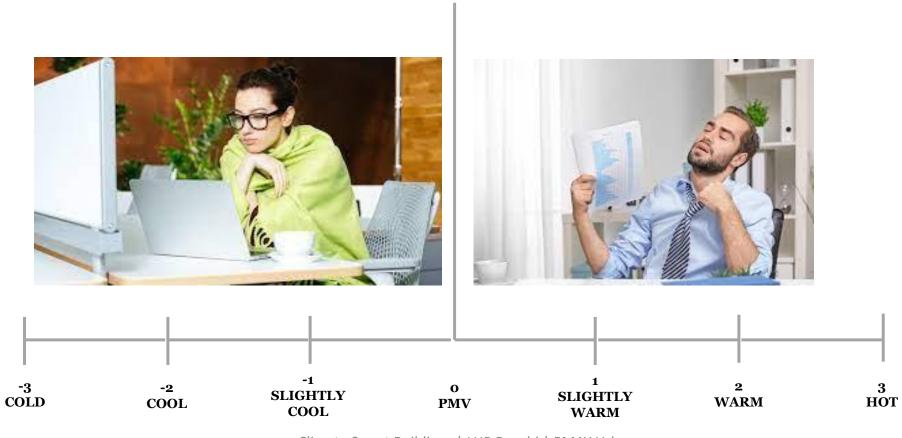


1 - PMV/PPD Methods

Predicted Mean Vote (PMV)
Predicted mean vote (PMV) is an index
that predicts the mean value of the
thermal sensation votes (self-reported
perceptions) of a large group of persons
on a sensation scale expressed from -3 to
+3 corresponding to the categories: cold |
cool | slightly cold | neutral | slightly
warm | warm | hot.

Predicted percentage of dissatisfied (PPD)

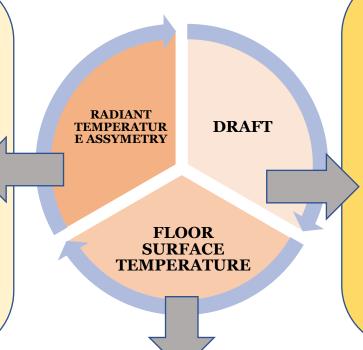
PPD is an index that establishes a quantitative prediction of the percentage of thermally dissatisfied people determined from PMV.



The comfort zone is determined by the combinations of the six parameters for which the PMV is within the recommended range (-0.5PMV+0.5), with the PMV equal to zero denoting thermal neutrality. While anticipating a population's thermal feeling is a crucial step in determining what conditions are pleasant, it is more vital to assess whether or not individuals will be satisfied.



It is critical to avoid local thermal discomfort, whether it is produced by a vertical air temperature difference between the feet and the head, an asymmetric radiant field, local convective cooling (draught), or contact with a hot or cold floor. When a person's thermal sensitivity is cooler than neutral, they are more sensitive to local discomfort, and when their body is warmer than neutral, they are less sensitive.



- Large variances in the heat radiation of the surfaces that surround a person might create local discomfort or impair acceptance of the temperature circumstances.
- The temperature disparities across diverse surfaces are limited by ASHRAE Standard 55.

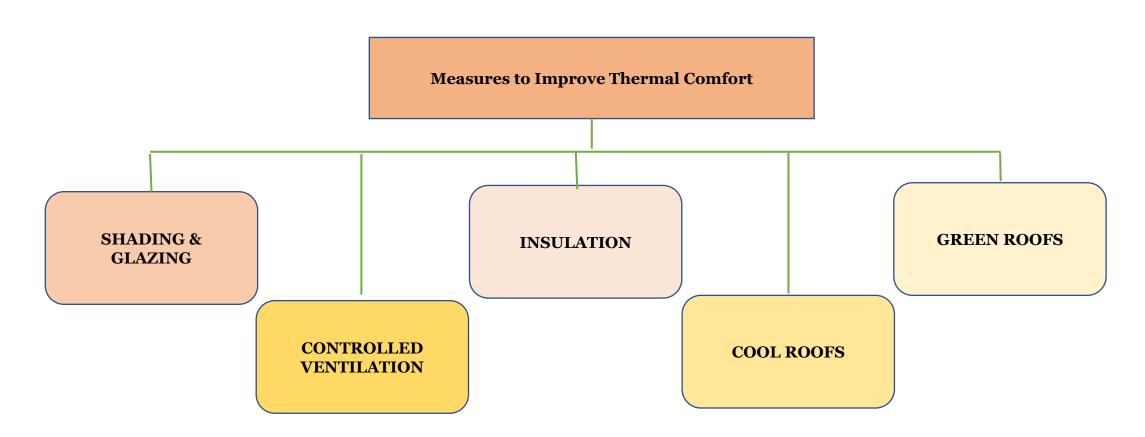
 Because some asymmetries are more sensitive than others, such as a warm ceiling against hot and cold vertical surfaces, the limitations vary depending on which surfaces are involved.
- The ceiling cannot be more than +5 °C (9.0 °F) warmer than the other surfaces, but a wall can be up to +23 °C (41 °F) warmer.

- While air movement can be enjoyable and give pleasure in some situations, it can also be unwelcomed and cause discomfort in others.
- The undesired air movement is known as "draught," and it is most noticeable when the complete body's thermal sense is cool.
- A draught is most likely to be felt on exposed body regions such as the head, neck, shoulders, ankles, feet, and legs, although the sensation is also affected by air speed, air temperature, activity, and clothing.

Depending on the footwear, too hot or too cold floors might be uncomfortable. In rooms where users will be wearing lightweight shoes, ASHRAE 55 advises keeping floor temperatures between 19–29 °C (66–84 °F).

There will always be a percentage dissatisfied occupants. Often it will be the same person, therefore the values should not be added

CATEGORY	PPD (PREDICTED PERCENTAGE DISSATISFIED)	PMV (PREDICTED MEAN VOTE)	DR (DRAUGHT RISK)
	%	-	%
A	< 6	-0.2 < PMV < +0.2	< 10
В	< 10	-0.5 < PMV < +0.5	< 20
С	<15	-0.7 < PMV < +0.7	< 30



Measures to Improve Thermal Comfort

Shading & Glazing

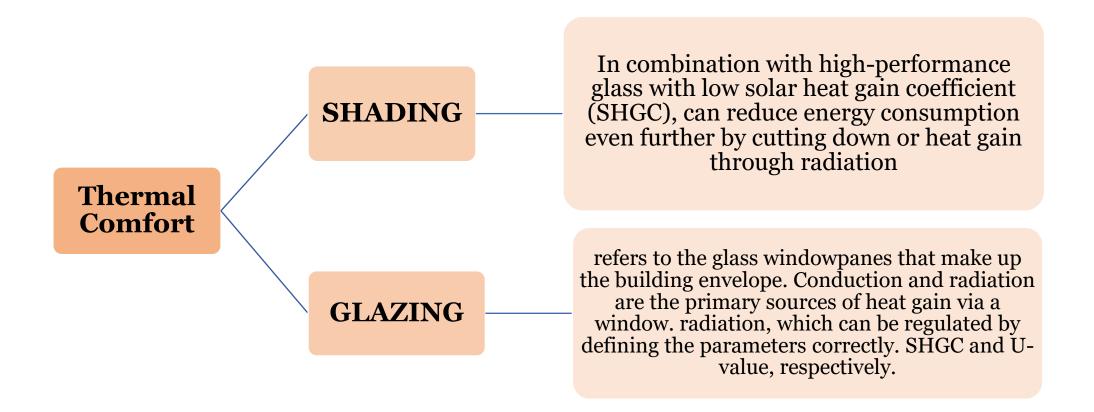
Shading reduces internal heat gain through coincident radiation.

VARIOUS METHODS TO SHADE WINDOWS					
Overhangs	Awnings	Louvers	Vertical Fins	Light Shelves	Natural Vegetation

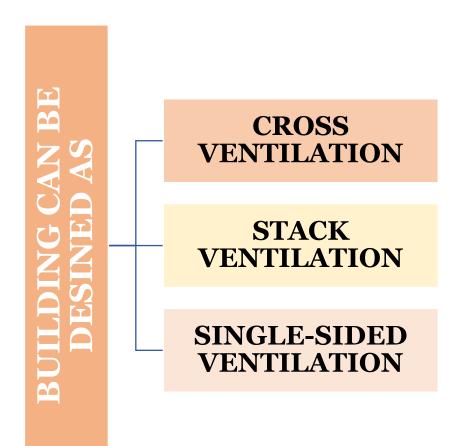
These can reduce cooling energy consumption by 10-20%

The shading mechanism can be fixed or movable (manually or automatically) for allowing varying levels of shading based on

- 1. the sun's position and
- 2. movement in the sky



Shading & Glazing





Controlled Ventilation

Controlled Ventilation

Designing windows and vents to dissipate warm air and allow the ingress of cool air can reduce cooling energy consumption by 10-30%

Air Velocity range between 0.5 to 1 m/s

Drops temperature at about 3 ^OC at 50% relative Humidity

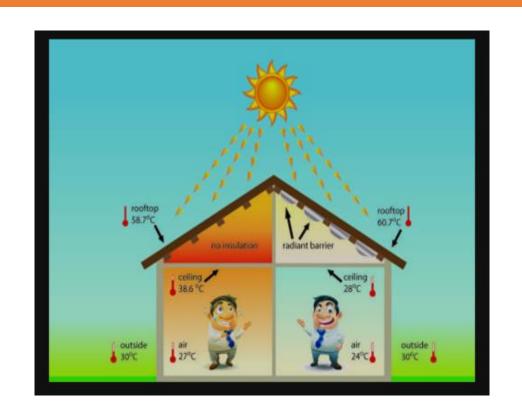
AIR VELOCITY OF 1 m/s		
Office Environment	Too High	
Home Environment	Acceptable (Especially if there is no resource to active air conditioning.)	

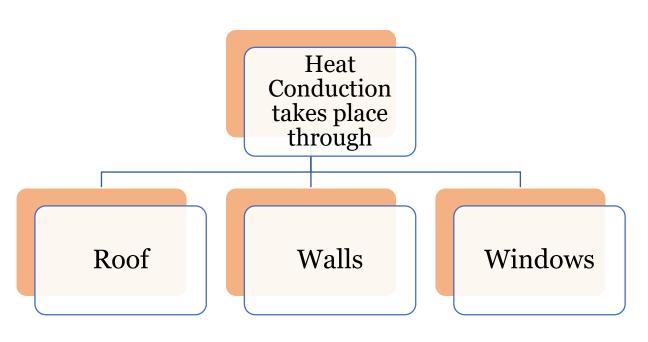
Controlled Ventilation

Natural ventilation takes advantage of the differences in air pressure between warm air and cool air, as well as convection currents, to remove warm air from an indoor space and allow fresh cooler air in.

This also has the added advantage of cooling the walls and roofs of the buildings that hold significant thermal mass, further enhancing the thermal comfort of the occupants

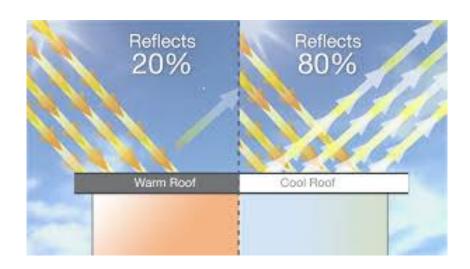
NATURAL V		
With Breeze Air	Works Best	Even in hot-dry and warm-humid climate zones where some air-conditioning may be required during
Absence of natural breeze	Absence of natural breeze Fans can be used to improve the flow of cool air	
Natural ventilation promotes the occupants' adaptation to external temperature, called adaptive thermal comfort		night ventilation and natural ventilation during cooler seasons





Insulation

An insulating material can resist heat transfer due to its low thermal conductivity. Insulating walls and the roof can reduce cooling energy loads by up to 8%



Cool Roofs

Cool roofs are one of the passive design options for reducing cooling loads in buildings. Cool roofs reflect most of the sunlight (about 80% on a clear day)

When sunlight is incident on a dark roof	When Sunlight is incident on a cool roof
38% heats the atmosphere	10% heats the environment
52% heats the city air	8% heats the city air
5% is reflected	80% is reflected
	1.5% heats the building

Cool Roofs

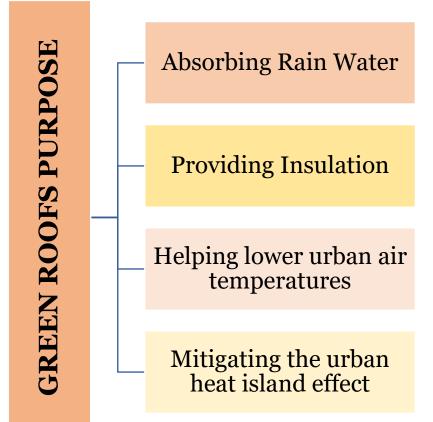
In the summer, a typical cool roof surface temperature keeps 25-35°C cooler than a conventional roof, lowering the internal air temperature by roughly 3-5°C and improving the thermal performance.

The comfort of the inhabitants is improved, and the roof's lifespan is extended.

Cool roofs increase the durability of the roof itself by reducing thermal expansion and contraction.

Apart from helping enhance the thermal comfort in the top floor and helping reduce air-conditioning load, cool or white roof or pavements also offer significant reduction in urban heat island effect

The cities of Jodhpur and Jaipur is the extremely hot state of Rajasthan, where most of the city homes are painted in light blue and light pink colours, are examples of practical application of this age-old traditional design style.



Green Roofs

A green roof is a roof of a building that is partially or completely covered with vegetation

Green Roofs

Reduction in Energy use is an important feature of Green Roofing

GREEN ROOFS IN BUILDINGS ALLOWS		
During cooler Winter Months	Retain their heat	
During hotter Summer Months	Reflecting and absorbing solar radiations	

Thermal Comfort in Affordable Housing

70% of the buildings needed in India by 2030 have yet to be constructed. Maintaining the status quo is pointless, and there is a huge opportunity to properly incorporate passive design strategies across our built environment.

Passive solutions for thermal comfort in buildings can greatly reduce cooling, ventilation, and lighting requirements

Less reliance on mechanical cooling/heating approaches reduces the generation of surface ozone, resulting in better air quality

Building techniques that are more sensitive will tend to reduce disparities in thermal comfort between different income classes as more people become aware of the benefits of sustainable building design.

Thermal Comfort in Affordable Housing

Impact of Thermally Comfortable Affordable Housing

Thermal comfort in housing is one of the key pillars to achieve India's National Cooling Action Plan target of reducing cooling energy need by 20-40 per cent by 2037-38.

Overview of affordable housing sector

80 million

households in India are estimated to be living in slums

40 million

current housing shortage in Rural areas 20 million

current housing shortage in Urban areas

70%

housing shortage in Rural areas is mainly in affordable segment Thermal comfort housing can have numerous positive impacts

Lower operational costs for the economically weaker sections

Broader market & outreach for the sustainable material & technology market

Social benefits rising from belter comfort conditions like boost in academic performance of kids, improvement in quality of life of the women

Boost to meet the targets of Paris Agreement & achievement of sustainable development goal specially number 3, 11 & 13

Better health and well being of the occupants

Passive Measures

Climatic Zone Level Temperature, rainfall, wind direction, sun radiation, humidity, and other environmental factors are taken into consideration when designing.

Level of Response

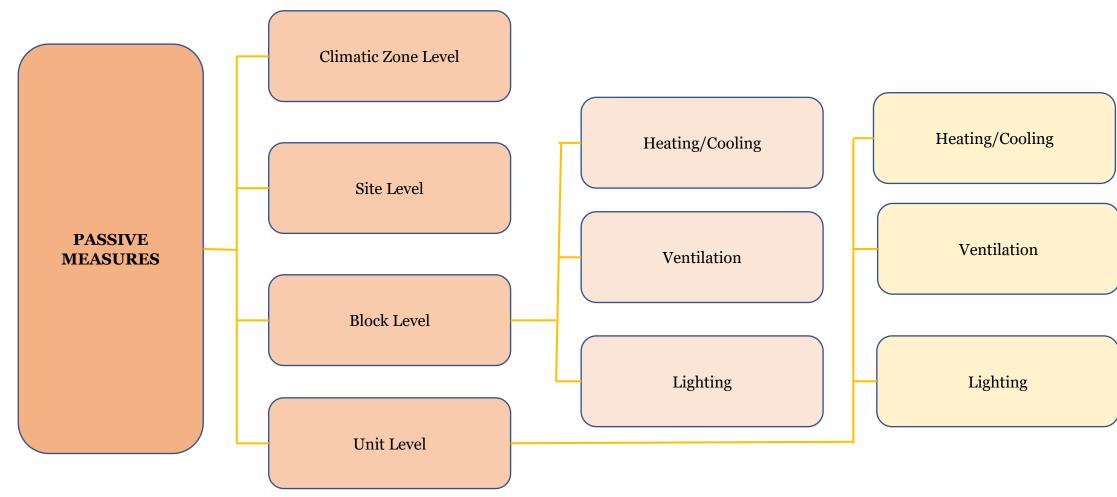
Block Level Interaction of the block with its surroundings and plants to ensure that it has adequate heating, ventilation, and lighting.

Site Level

To take advantage of the positive aspects of the site and its microclimatic features while minimising the negative aspects.

Unit Level

Design solutions that influence heat, light, and ventilation based on climatic variables at the unit level.



Passive Measures – Climatic Zone Level

Vernacular / traditional architectural typologies that respond to the region's distinct environment are best exemplified.

Example

- In Ladakh, earth architecture with thick walls and limited windows provides optimal insulation.
- In Rajasthan, courtyard havelis take advantage of pressure differences and reciprocal shading to provide natural cooling and ventilation.
- In Kerala, sloping roofs are used to guard against severe rains.

Passive Measures – Site Level

Reducing the 'heat island' effect with approaches like:

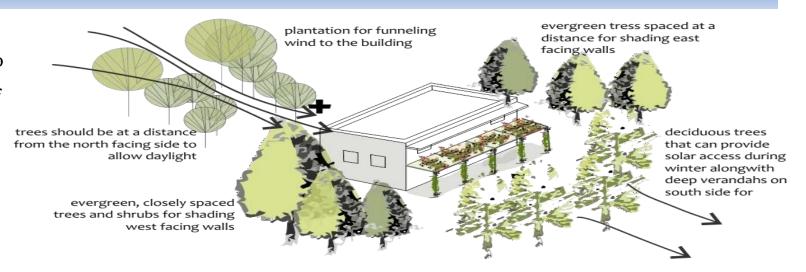
Courtyards / open courts are often surrounded by construction.

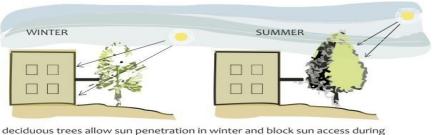
Taking advantage of block mutual shading

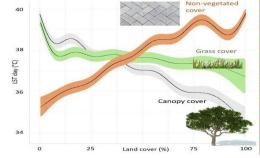
Using site massing to create wind passageways

lowering the amount of hard paving to allow for water absorption

Using complementary vegetation to manage the amount of sunlight that gets through as the seasons change

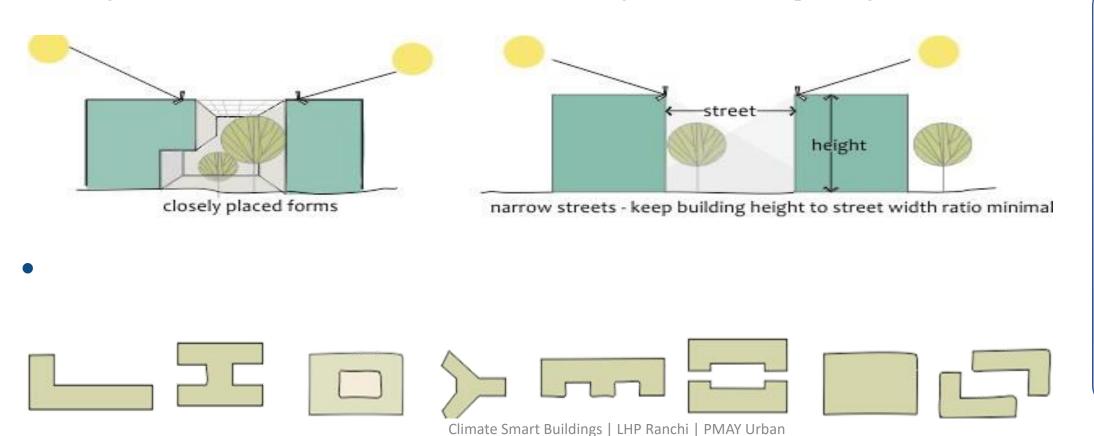





Passive Measures – Leveraging Plantation

Planting trees in the right places to provide shade and ventilation can significantly reduce the severity of intense weather. During heatwaves in Adelaide, a research found that districts with more vegetation cover remained cooler by up to 6°C.

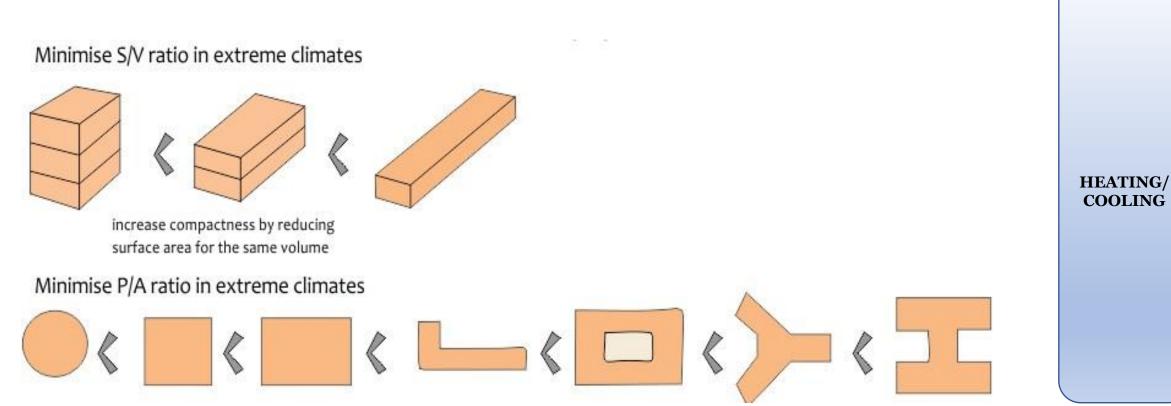
deciduous trees allow sun penetration in winter and block sun access during summer



Block Level

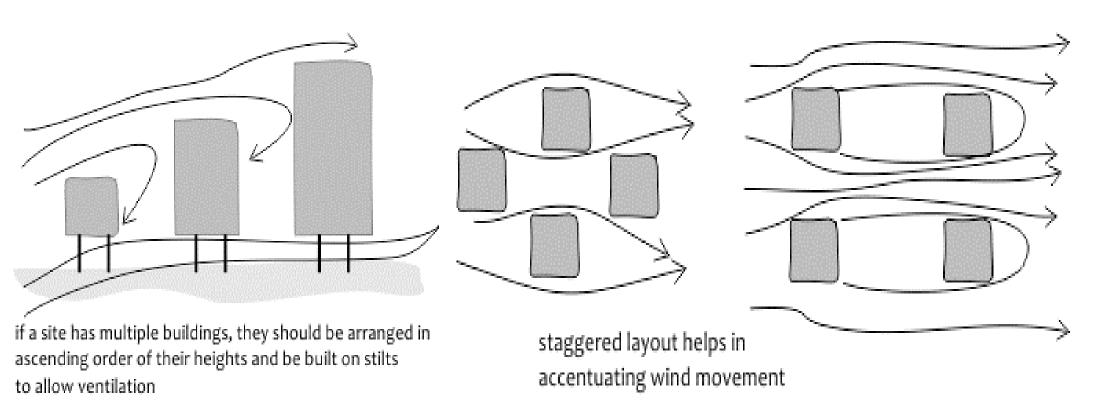
Arrange the blocks so that mutual shade is obtained, avoiding solar heat buildup throughout the summer.

HEATING/ COOLING



Block Level

In harsh climate zones, reduce the surface area to building volume and perimeter to area ratios to reduce solar radiation exposure.

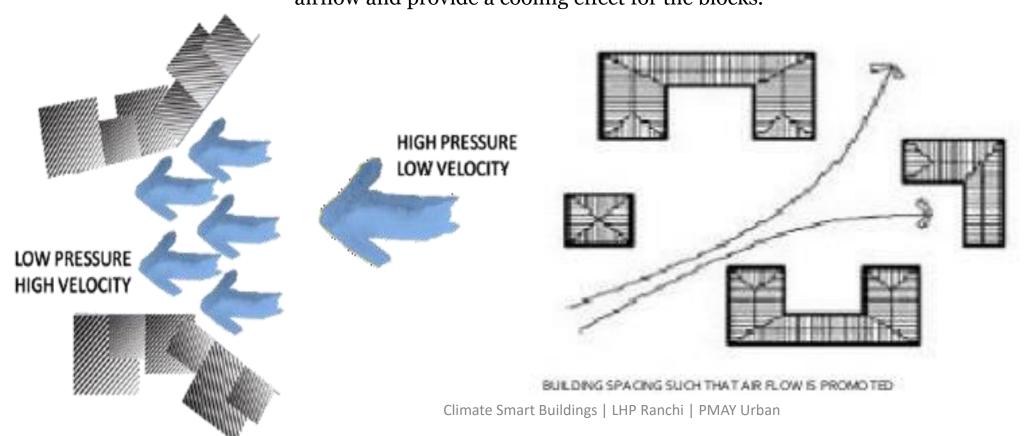


Block Level

Wind shadows should be avoided by building orientation.

VENTILAT ION

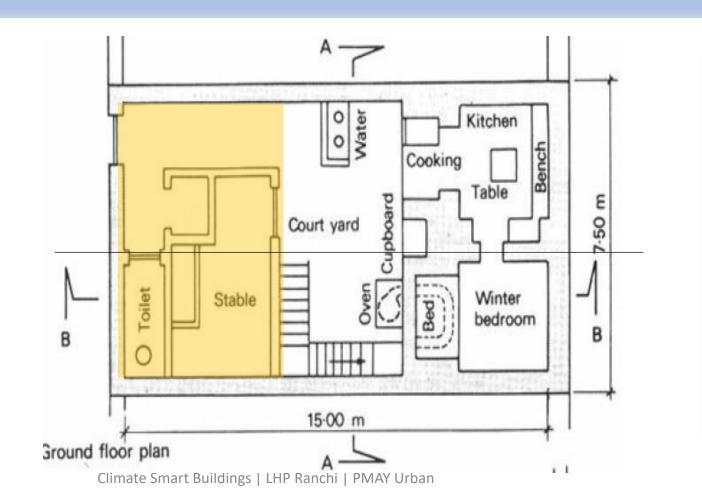
Climate Smart Buildings | LHP Ranchi | PMAY Urban



Block Level

Wind flows can be harnessed by constructing courts and catchment zones of various sizes. This can help to improve airflow and provide a cooling effect for the blocks.

VENTILAT ION


Unit Level

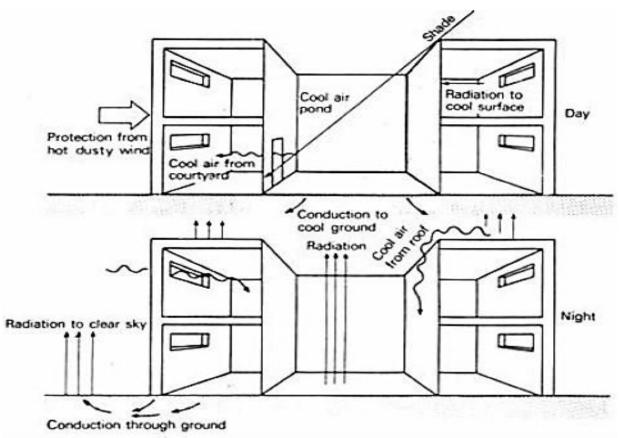
FORMS AND ORIENTATION:

Sun radiation penetration patterns and, as a result, heat uptake and loss in a building are affected by changes in solar route during different seasons.

Internal layout is of the courtyard type, which is rather compact. Reduced sun exposure on East-West external walls to reduce heat gain.

If planned and situated on the east and, especially, the west end of the structure, non-habitable rooms (stores, bathrooms, etc.) can be efficient thermal barriers.

HEATING/ COOLING



Unit Level

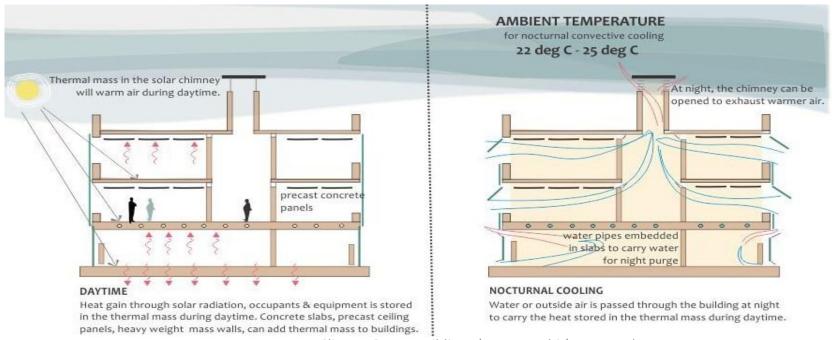
FORMS AND ORIENTATION:

High walls block the sun, resulting in significant portions of the inner surfaces and courtyard floor being shaded during the day.

The dirt beneath the courtyard will extract heat from the surrounding places and remit it to the open sky during the night, resulting in cooler air and surfaces.

HEATING/ COOLING

Climate Smart Buildings | LHP Ranchi | PMAY Urban



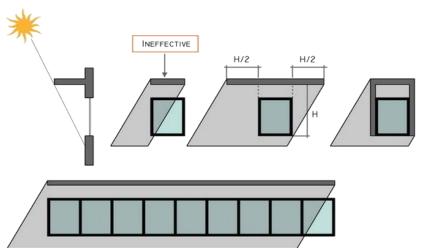
Unit Level

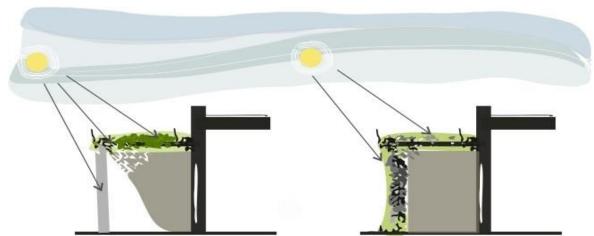
THERMAL MASS:

Thermal mass can be combined with night-time convective cooling, sometimes known as "night cooling," to passively cool buildings. Thermal mass as a passive cooling and heating approach requires a large diurnal swing.

HEATING/ COOLING

Climate Smart Buildings | LHP Ranchi | PMAY Urban




Unit Level

SHADING:

Shade-producing plants, such as creepers, can be used.

Fenestrations and shades/chajjas can be built to maximise solar radiation depending on the environment.

HEATING/ COOLING

Unit Level

ORIENTATION:

Buildings can be orientated in relation to the prevailing wind direction at angles ranging from 0° to 30°.

In buildings with a courtyard, positioning the courtyard 45 degrees from the prevailing wind maximises wind flow into the courtyard and improves cross ventilation in the building (in climates where cooling is required).

CREATING PRESSURE DIFFERENCES:

A 'squeeze point' occurs when wind enters through a smaller opening and escapes through a larger opening.

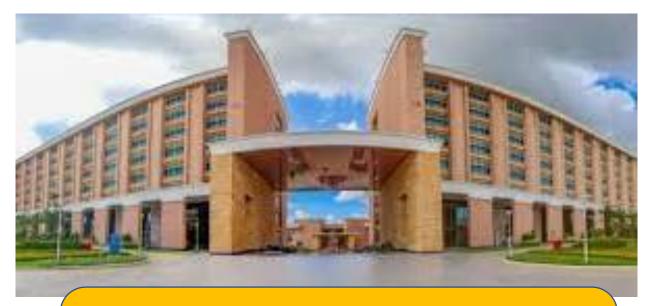
This generates a natural vacuum, which speeds up the wind.

The total area of apertures should be at least 30% of the total floor space.

The window-to-wall-ratio (WWR) should not exceed 60%.

VENTILATION

CASE STUDIES



INFOSYS – POCHARAM CAMPUS

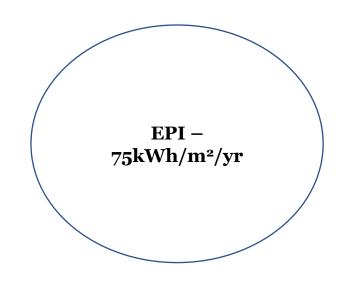
LOCATION	HYDERABAD, TELANGANA
COORDINATES	17° N, 78° E
OCCUPANCY TYPE	OFFICE
TYPOLOGY	NEW CONSTRUCTION
CLIMATE TYPE	HOT AND DRY
PROJECT AREA	27,870 m²

Given the high-standards in terms of building design achieved at the SDB1 in Hyderabad, it has now been showcased in the 'Best Practices Guide for High Performance Indian Office Buildings' by Lawrence Berkeley National Lab, a U.S. Department of Energy (DoE) National Laboratory.

- The Indian Green Building Council (IGBC) has given Infosys, a worldwide consulting and technology firm, the LEED (Leadership in Energy and Environmental Design) India 'Platinum' designation for its Software Development Block 1 (SDB 1) at its Pocharam site in Hyderabad, India.
- The SDB 1 is the first commercial building in India to deploy unique Radiant-cooling technology, setting new norms for energy efficiency in building systems design.

It has been built keeping in mind a holistic approach to sustainability in five key areas

SUSTAINABLE SITE DEVELOPMENT


ENERGY

EFFICIENCY

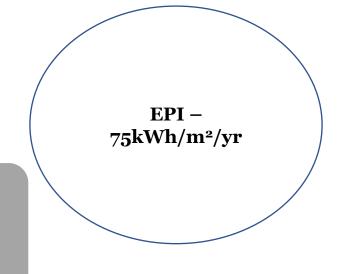
MATERIALS SELECTION

WATER SAVINGS

INDOOR ENVIRONMEN T QUALITY

GODREJ PLANT 13 ANNEXE

LOCATION	MUMBAI, MAHARASHTRA
COORDINATES	19° N, 73° E
OCCUPANCY TYPE	OFFICE – PRIVATE
TYPOLOGY	NEW CONSTRUCTION
CLIMATE TYPE	WARM AND HUMID
PROJECT AREA	24,443 m²



GODREJ PLANT 13 ANNEXE

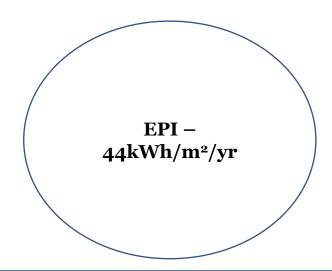
The Plant 13 Annexe Building at Godrej & Boyce (G&B) in Mumbai has been designated as India's first CII-IGBC accredited Net Zero Energy Building. The structure is a mixed-use office/convention center (with office spaces, conference and meeting rooms, auditoriums (90 to 250 seats), banquet hall, 300-person eating facilities, and an industrial kitchen), making certification extremely difficult.

In 2015, the building received an IGBC Platinum grade in the EB (Existing Building) category, which was recertified in 2019. In 2016, it was also awarded the BEE 5 Star Rating. In 2019, he received the 'Energy Performance Award' for meticulous energy measuring and monitoring. At the CII National Energy Management Award event in 2020, it was named "Excellent Energy Efficient Unit."

INDIRA PARYAVARAN BHAWAN, MoEF

LOCATION	NEW DELHI
COORDINATES	29° N, 77° E
OCCUPANCY TYPE	OFFICE & EDUCATIONAL
TYPOLOGY	NEW CONSTRUCTION
CLIMATE TYPE	COMPOSITE
PROJECT AREA	9565 m²

The Indira Paryavaran Bhawan is now India's most environmentally friendly structure. GRIHA 5 Star and LEED Platinum certifications were awarded to the project. The structure has already received accolades, including the MNRE's Adarsh/GRIHA Award for Outstanding Integration of Renewable Energy Technologies.



The new office building for the Ministry of Environment and Forest (MoEF), Indira Paryavaran Bhawan, is a significant departure from traditional architectural design

To reach net zero criterion, several energy saving measures were implemented to lower the building's energy loads, with the residual demand being satisfied by producing energy from on-site installed high efficiency solar panels.

The project team focused on measures for lowering energy demand, such as ample natural light, shade, landscape to reduce ambient temperature, and energy-efficient active building technologies

When compared to a conventional building, Indira Paryavaran Bhawan utilizes 70% less energy. The project used green building principles, such as water conservation and optimization through site waste water recycling.

Renewable Energy Integration 930 kW PV panels with a total area of 4650m² for onsite generation, tilted at 23° facing south to generate equivalent to 70kWh/m²/yr

JAQUAR HEADQUARTERS

LOCATION	MANESAR HARYANA
COORDINATES	28° N, 77° E
OCCUPANCY TYPE	CORPORATE AND MANUFACTURING
TYPOLOGY	NEW CONSTRUCTION
CLIMATE TYPE	COMPOSITE
PROJECT AREA	48000 m ²

JAQUAR HEADQUARTERS

The building is a perfect blend of modern design sensibilities, biophilic inspiration, and a brand ambition of soaring high.

The Jaguar Headquarters in Manesar is not only a stunning structure, but also a painstakingly constructed complex with cutting-edge technology that has resulted in a net zero campus with a LEED Platinum (USGBC) rating. This project is known for its complex organic design and space arrangement, making it a visual pleasure.

Through its characteristic wing-shaped architecture, the design redefines a business workplace by giving it a memorable experience. The spreading wings of a symbolic eagle, poised to take flight, are atop the horizontal glass edifice, suggesting a firm with worldwide ambitions.



ST. ANDREWS BOYS HOSTEL BLOCK, GURUGRAM

LOCATION	GURUGRAM HARYANA
COORDINATES	28° N, 76° E
OCCUPANCY TYPE	HOSTEL
TYPOLOGY	NEW CONSTRUCTION
CLIMATE TYPE HOT AND DRY	
PROJECT AREA	5574 m²

ST. ANDREWS BOYS HOSTEL BLOCK, GURUGRAM

The goal of the design process was to increase student interaction within the indoor areas, which then spilled outdoors and interacted with the surrounding landscape.

On the south and north facades, the linear block was twisted to create a shaded entry (summer court) and an open terrace (winter court), respectively, to stimulate activities at all times of the day and season. The ramp serves as a buffer between the hot outdoors and the cooler interior, preventing kids from experiencing heat shock.

ST. ANDREWS GIRLS HOSTEL BLOCK, GURUGRAM

LOCATION	GURUGRAM HARYANA
COORDINATES	28° N, 76° E
OCCUPANCY TYPE	HOSTEL
TYPOLOGY	NEW CONSTRUCTION
CLIMATE TYPE	HOT AND DRY
PROJECT AREA	2322 m²

ST. ANDREWS GIRLS HOSTEL BLOCK, GURUGRAM

Indoor and outdoor spaces that connect physically and aesthetically at different levels to encourage interactions and social activities are incorporated into the building's plan.

The entrance foyer and lobby were planned as outdoor spaces facing west and connected to the pantry so that students can enjoy their nights outside with a spill-out into the green landscape.

AKSHAY URJA BHAWAN HAREDA

LOCATION	PANCHKULA HARYANA	
COORDINATES	30° N, 76° E	
OCCUPANCY TYPE	OFFICE - PUBLIC	
TYPOLOGY	NEW CONSTRUCTION	
CLIMATE TYPE	COMPOSITE	
PROJECT AREA	5100 m²	

AKSHAY URJA BHAWAN HAREDA

Mechanical air conditioning is used to guarantee thermal comfort in apical zones at all times.

Zones are created based on the intended temperature set points. 25 1 °C for apex offices, 25 3 °C for regulated office and public areas, and 25 5 °C for passive zones.

In the summer, controlled zones are cooled, and in the monsoon, they are chilled. In the summer, passive zones are cooled, while in the monsoon, they are aired. The centre atrium has a mist system for cooling the controlled and passive zones. Water that has been chilled to a temperature of 15°C.

SUN CARRIER OMEGA

LOCATION	BHOPAL M.P.
COORDINATES	23° N, 77° E
OCCUPANCY TYPE	OFFICE – PRIVATE
TYPOLOGY	NEW CONSTRUCTION
CLIMATE TYPE	HOT AND DRY
PROJECT AREA	9888 ft²

GRIDCO BHUBANESWAR

LOCATION	BHUBANESWAR.	
COORDINATES	20° N, 85° E	
OCCUPANCY TYPE	OFFICE	
TYPOLOGY	NEW CONSTRUCTION	
CLIMATE TYPE	WARM AND HUMID	
PROJECT AREA	15,793.5 m ²	

GRIDCO BHUBANESWAR

The structure was created using computer simulation to determine how long direct sunshine or radiation was tolerable for human habitat based on the sun-path of Bhubaneswar.

The structure encourages natural light and screen radiation. It would feature photovoltaic glass panels and geothermal cooling systems strategically placed, as well as indigenous solar producing technologies, to ensure that it is self-sustaining.

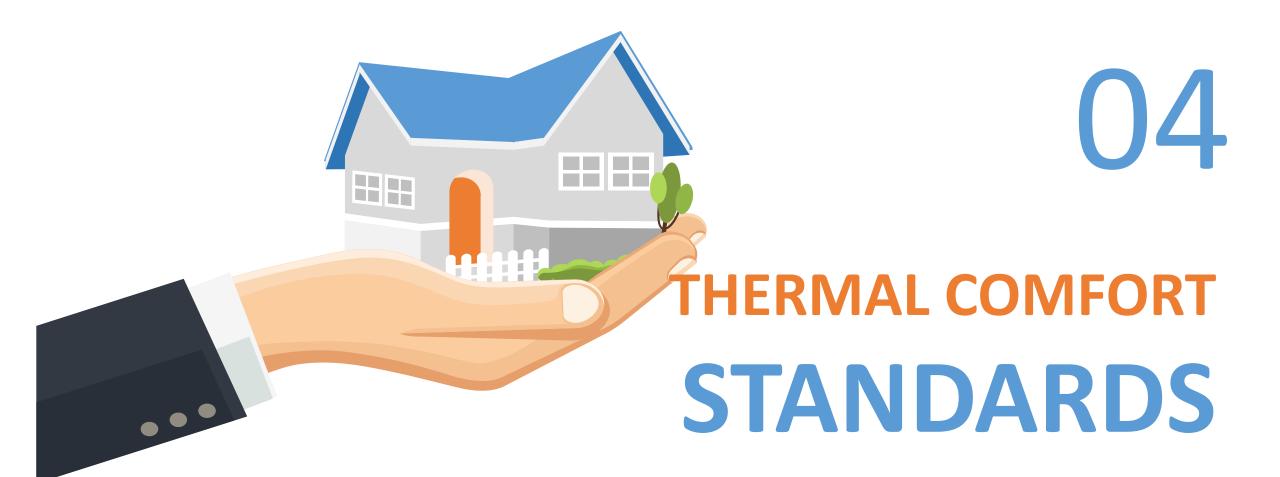
Rainwater can be collected, purified, and utilised as drinkable water. Grey water that has been treated can be reused for flushing and landscape irrigation.

DAY 1

Lunch Break

DAY 1

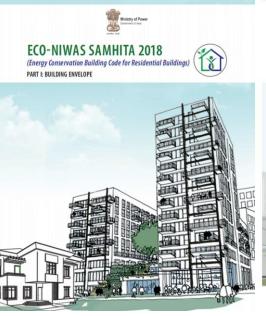
Session 2

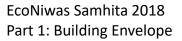


Thermal Comfort Standards

ASHRAE - 55

National Building Code - 2016


Handbook of Functional Requirements of Buildings 1987 by BIS



Eco Niwas Samhita Part 1 and Part 2

ISHRAE – Indoor Environmental Quality Standards 2018-19

BUREAU OF ENERGY LEFFICIENCY (BEE)
(Miniory of Privor, Covernment of India)
Workto unvaluednika garia

EcoNiwas Samhita 2021
Code Compliance and Part 2

ASHRAE 55

Meeting the standards for Thermal Comfort

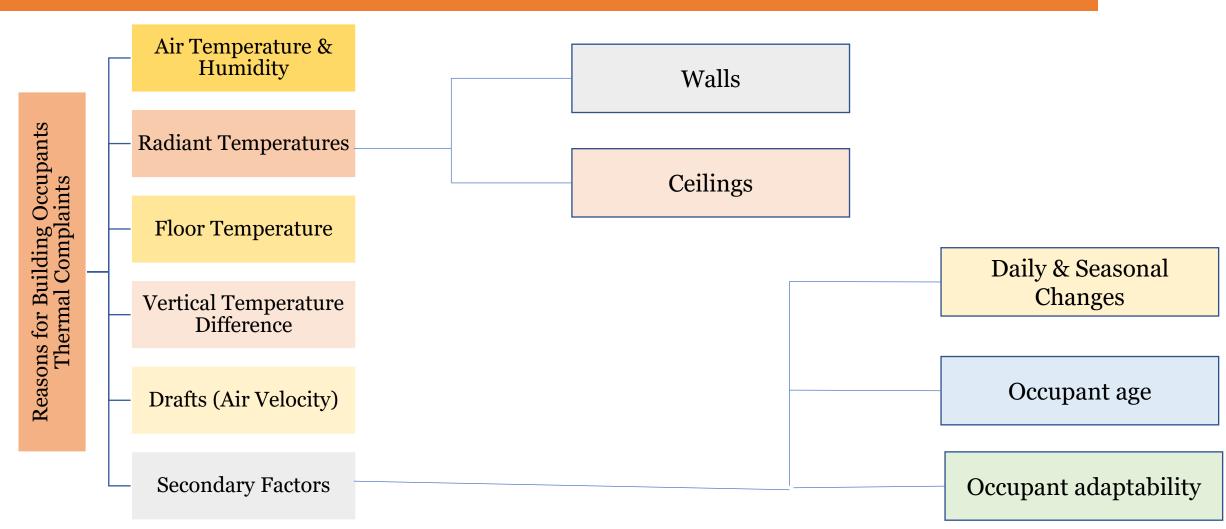
ASHRAE standard 55, Thermal Environmental condition for Human Occupancy

ISO 7726:1998

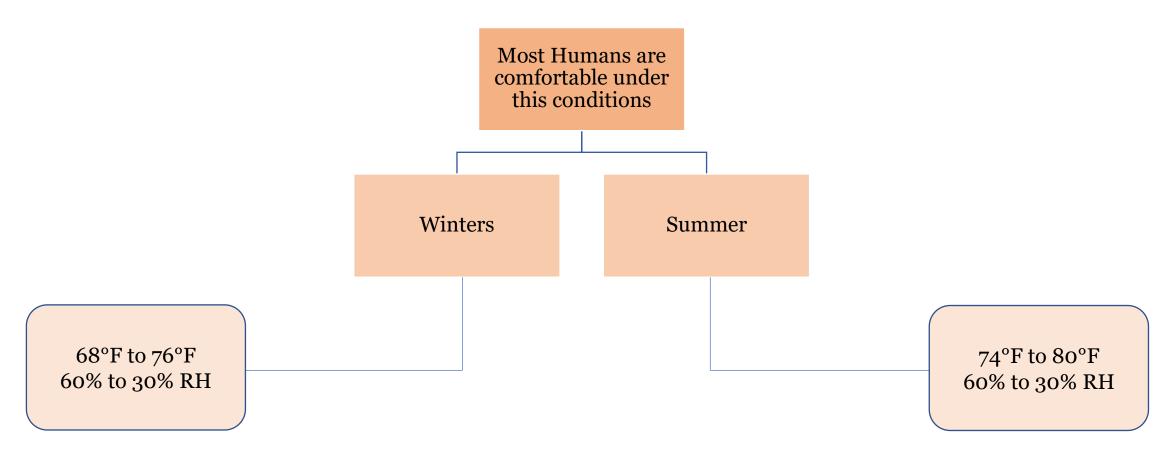
Ergonomics of the Thermal Environment – Instruments for measuring Physical quantities

ISO 7730:1994

Moderate Thermal Environments – Determination of the PMV and PPD Indices and specification of the conditions for Thermal Comfort

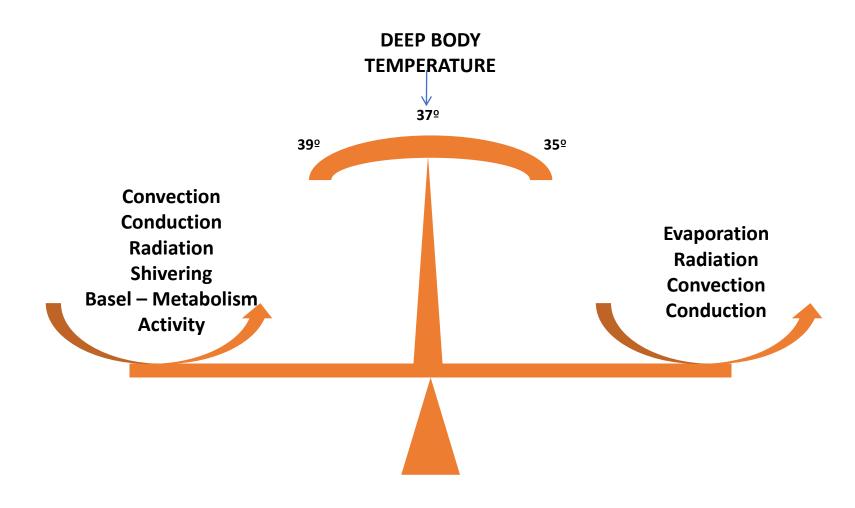


ASHRAE 55



ASHRAE 55

Human Comfort Range



Body Regularity Mechanism

Body Regularity Mechanism

The Thermal balance of the body can be shown by following equation, if the heat gain and lost factors are

Gain	Met = Metabolism (basel and muscular)
	Cnd = Conduction (contact with warm bodies)
	Cnv = Convection (if the air is warmer than skin)
	Red -= Radiation (from the sun, the sky and hot bodies)
Loss	Cnd = Conduction (contact with cold bodies)
	Cnv = Convection (if the air is cooler than the skin)
	Red = Radiation (to night sky and cold surface)
	Evp = Evaporation (of moisture and sweat)

Then Thermal Balance exist when:

$$Met - Evp + Cnd + Cnv + Red = o$$

Body Thermal Balance

The body generates heat on a constant basis. The majority of the metabolic processes involved, such as tissue formation, energy conversion, and muscular effort, are all exothermic. Food ingestion and digestion provide the energy required, and metabolism refers to the process of converting food into living matter and usable energy.

METABOLIC HEAT PRODUCTION

BASEL METABOLISM

Heat Production of Vegetative, automatic process

MUSCULAR METABOLISM

Heat Production due to consciously controlled work

Body Thermal Balance

- Only 20% of the heat generated in the body is used, thus any excess heat must be evacuated.
- The mechanism by which the human body maintains its core internal temperature is known as thermoregulation.
- Homeostasis is the state of having a constant internal temperature. All thermoregulation systems aim to bring the body back to a state of homeostasis.
- The temperature range for a healthy safe temperature is between 98.6° F (37°C) and 100° F (37.8°C). The temperature on your skin is between 31° and 34°.

HUMAN BODY RELEASES HEAT TO THE ENVIRONMENT BY

EVAPORATION

RADIATION

CONVECTION

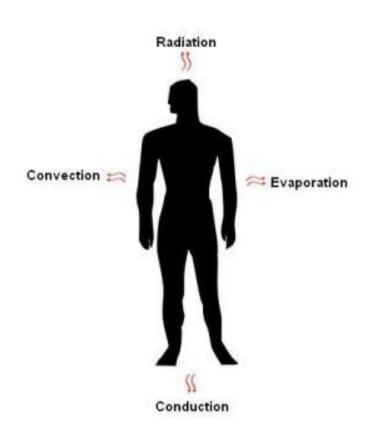
CONDUCTION

Body Thermal Balance – Heat Loss by Human Body

CONVECTION

- The heat from the body is transferred to the air in contact with the skin or clothing, which rises and is replaced by cooler air.
- Faster air movement, lower temperature, and a higher skin temperature all enhance the rate of convective heat loss.

RADIATION

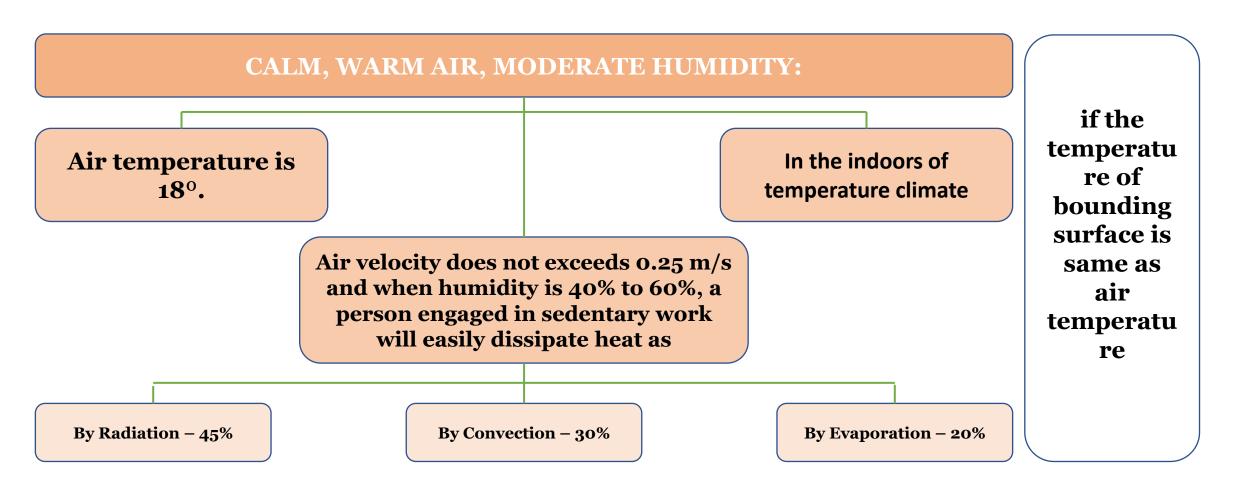

• The temperature of the body surface and the temperature of the opposing surface affects radiant heat loss.

CONDUCTION

• It is determined by the temperature difference between the body surface and the object with which the body is in direct touch.

EVAPORATION

- Is determined by evaporation rate, which is influenced by air humidity (the dryer the air, the faster the evaporation) and the amount of moisture available for evaporation.
- Perspiration and sweating cause evaporation, as does breathing in the lungs.



HOT AIR AND CONSIDERABLE RADIATION

The Human body temperature is 37°. But skin temperature is 31-34°. Body can gain substantial heat by radiation: Sun, radiator, bonfire.

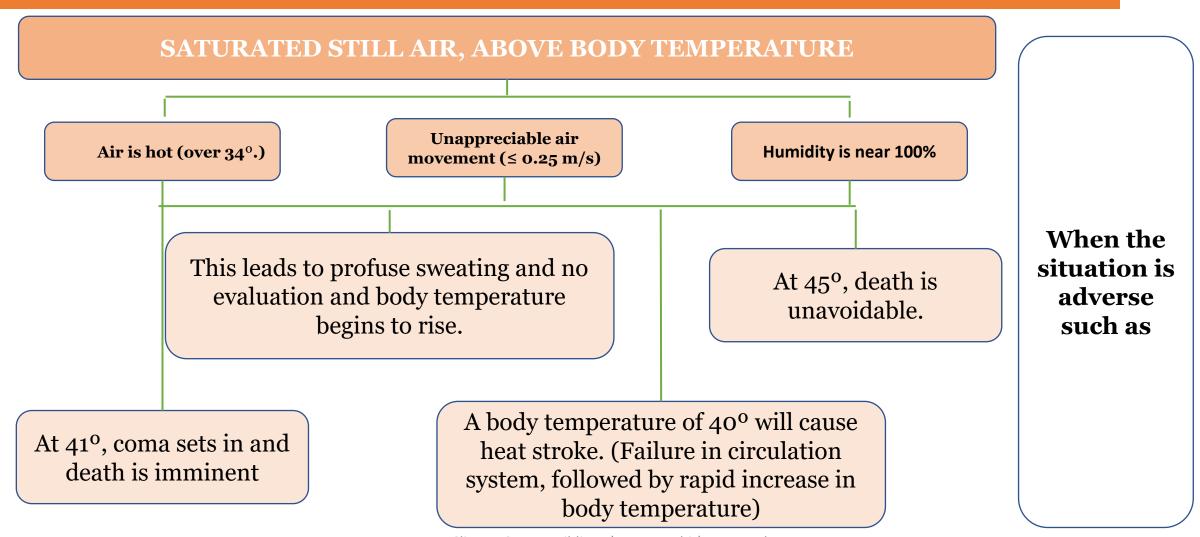
Even if heat loss is small in the above scenario, evaporation can still occur if the air is suitably dry.

Heat loss via convection steadily declines as air temperature approaches skin temperature, and the body performs vasomotor adjustments to raise temperature to the higher limit (34°), but once the air temperature hits this point, there is no more heat loss by convection.

HOT AIR, RADIATION AND APPRECIABLE AIR MOVEMENT

When the air is hot (equal to or above skin temperature), the surrounding objects are hot (no heat loss by radiation), and when the air is humid (less than 100% RH), air movement will speed up evaporation, even though the air temperature is higher than skin temperature. Moving air constantly replaces saturated air in the surrounding area.

Inadequately planned houses can generate a lethal condition in which the air is entirely saturated, there is no air flow, and the air is warmer than the skin, resulting in heat stroke.



Climate Smart Buildings | LHP Ranchi | PMAY Urban

Measurements of Thermal Comfort

- Developed in parallel with ASHRAE 55
- Evaluate and measure the moderate Thermal Environment
- Extreme Environments
 - ✓ ISO 7243:2017
 - ✓ ISO 7933: 2004
 - ✓ ISO/TR 11079:1993

BS EN ISO 7730

Ergonomics of the Thermal Environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local Thermal comfort criteria

BS EN ISO 7726

Ergonomics of the Thermal Environment - Instruments for measuring Physical quantities

General Requirements & Standard Conditions of ASHRAE 55

The standards and conditions that must be completed in order to comply with ASHRAE 55 are defined in sections 4 and 5. The criterion must be applied to the specific space being evaluated, the inhabitants who will be inhabiting the area, locations within that space if not the entire space, and any outlier occupants, according to general requirements (i.e., children, disabled persons, elderly persons, etc.).

Because satisfying everyone in a given place is impossible owing to unknown differences, the mandatory requirements that must be met to comply with ASHRAE standard 55 exist in a range of values (physiologically and psychologically). As a result, ASHRAE 55 specifies a certain percentage of occupants as acceptable, as well as the thermal environment values associated with that number.

Compliance with ASHRAE Standard 55

The comfort zone is regarded sufficient if at least 80% of its occupants are unlikely to object to the ambient state, implying that the majority are between -0.5 and 0.5 on the PMV scale.

Design conditions must maintain the spatial conditions within the acceptable range using one of the methodologies outlined in section 5 of the standard for building systems to comply with ASHRAE, including

natural ventilation systems

mechanical ventilation systems

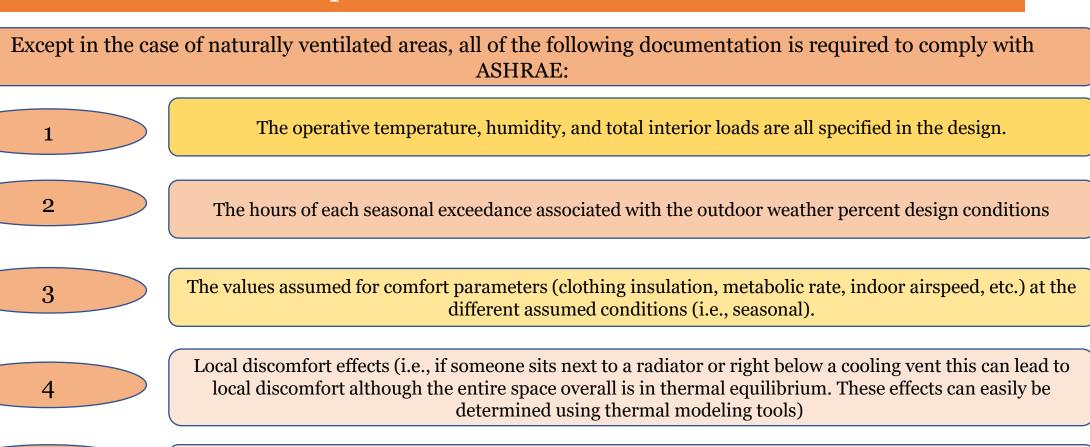
combinations of these systems

control systems

thermal envelopes

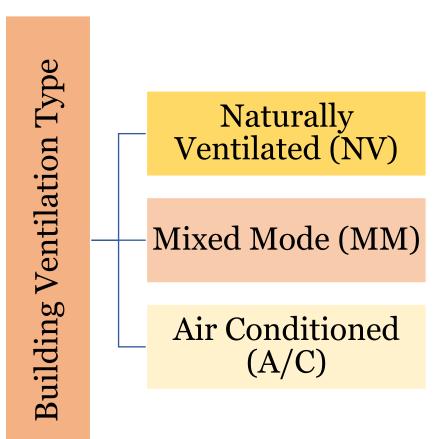
They must also account for all expected conditions (summer and winter, although barring extremes), external and internal environmental elements, and any essential documents.

5



Needed Thermal Comfort Compliance Documentation

The system input or output capacity needed to attain the design operative thermal conditions.



- The adaptive thermal comfort model saves more energy in buildings that are naturally ventilated when compared to air-conditioned buildings as residents adjust to wider indoor temperatures than the peripheral thermal comfort zones determined by the PMV model.
- IMAC Classifies the Building Ventilation into three types based on their HVAC system ranging from naturally ventilated to complete Air Conditioning

• The Standard Classification is based on the ADAPTIVE Thermal Comfort model which differentiate the thermal tolerance of occupants accustomed to monotonic temperature (such as air conditioned places) and people habituated to variation in internal temperatures (such as naturally ventilated structures)

• The Indoor operative temperature values for different building types (NV, MM & A/C) are Pre – Calculated for most Indian cities

Naturally Ventilated Buildings

- The Occupants in NV buildings are Thermally adapted to the outdoor temperature of their location.
- The Indoor Operative Temperature of the occupants to stay thermally comfortable is given by the belove equation.

Indoor Operative Temperature (°C) = 0.54 x Mean Monthly Outdoor DBT + 12.83

Acceptability range for naturally ventilated buildings is ±2.38°C

Mixed Mode Ventilated Buildings

- The MM Ventilated buildings takes into consideration the combination of natural ventilation and the availability of air-conditioning when necessary.
- The Occupants in MMV Buildings thermally adapt to the outdoor temperature more than the A/C buildings & somewhat less adaptive to NV building
- The Indoor Operative temperature for the occupants to stay thermally comfortable is given by the below equation.

Indoor Operative Temperature (°C) = 0.28 x Mean Monthly Outdoor DBT + 17.87

Acceptability range for Mixed Mode ventilated buildings is ±3.46°C

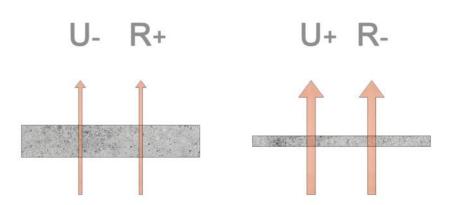
AC Buildings – Air Temperature based Approach

Indoor Operative Temperature (°C) = 0.078 x Mean Monthly Outdoor DBT + 23.25

Acceptability range for Air-Conditioned buildings is ±1.5°C

05

EFFECTS OF MATERIALS ON THERMAL COMFORT



U-Value or Thermal Transmittance

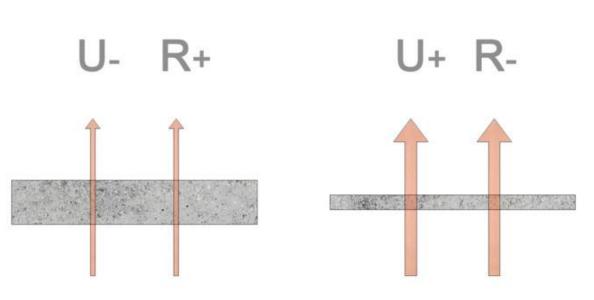
<u>U-Value or Thermal Transmittance (Reciprocal of R-Value)</u>

Thermal performance is quantified in terms of heat loss and is often represented as a U-value or R-value in the building sector. When developing construction strategies, U-value calculations will almost always be required. The rate of heat transfer through a structure (which can be a single material or a composite) divided by the temperature differential across that structure is known as thermal transmittance, also known as U-value.

- W/m²K is the unit of measurement.
- The lower the U-value, the better insulated the structure is.
- Workmanship and installation standards can have a significant impact on thermal transmission.
- The thermal transmittance can be much higher than desirable if insulation is installed improperly, with gaps and cold bridges.
- Thermal transmittance accounts for heat loss by conduction, convection, and radiation

U-Value Calculation

<u>U-Value or Thermal Transmittance (Reciprocal of R-Value)</u>

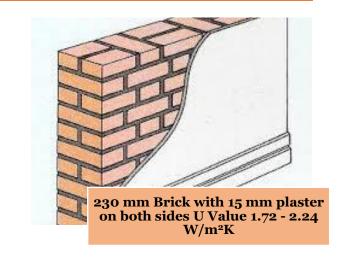

Thermal transmittance is the rate of heat transfer through materials

Unit of U value is W/(m²K)

$$U = \frac{1}{Thermal \ Resistance \ of a \ material \ (R)}$$

Where
$$R = \frac{Thickness\ of\ material\ (t)}{Conductivity\ (k)}$$

Conductivity (k) is the rate at which heat is transferred by conduction though material



Comparative in terms of U-Value

Conventional Materials vs Local Materials vs Materials used at LHP

Sr. No.	CONVENTIONAL MATERIALS		LOCAL MATERIALS		MATERIALS USED AT LHP	
	MATERIALS	U-VALUE	MATERILAS	U-VALUE	MATERIALS	U-VALUE
1	Red Bricks (230mm)	2.8 W/m ² K	Concrete Block (200mm)	$2.8\mathrm{W/m^2K}$	RCC Wall (150mm)	10.53 W/m ² K
2	Fly Ash Bricks (200mm)	4.28 W/m ² K	Sand Stone Blocks (200mm)	2.6 W/m ² K	AAC Blocks (200mm)	0.77 W/m²K

DAY 1

Session 3

Light House Projects

LHPs are model housing projects with houses built with shortlisted alternate technology suitable to the geo-climatic and hazard conditions of the region, an initiative under the Climate Smart Buildings Programme. These projects demonstrate and deliver ready to live houses with speed, economy and with better quality of construction in a sustainable manner.

Through the LHPs, it is envisaged to demonstrate innovative construction technologies which are cost-effective, green, and sustainable. These LHPs shall serve as LIVE Laboratories for different aspects of Transfer of technologies to field application, such as planning, design, production of components, construction practices, testing etc. for both faculty and students, Builders, Professionals of Private and Public sectors, and other stakeholders involved in such construction.

Currently the LHPs' are being implemented in six states (Uttar Pradesh, Gujarat, Madhya Pradesh, Gujarat, Jharkhand, and Tripura) of India under Global Housing Technology Challenge (GHTC) – India. These projects will be made up of modern technology and innovative processes and reduce the construction time and make a more resilient, affordable, and comfortable house for the poor.

Light House Projects

Following are the details of Construction Technologies being employed at the Light House Projects selected under the Global Housing Technology Challenge (GHTC) – India

Monolithic Concrete Construction using Tunnel Formwork

- LHP Location: Ranchi, Gujarat
- No. of Houses: 1144

Prefabricated Sandwich Panel System

- LHP Location: Indore, Madhya Pradesh
- No. of Houses: 1024

Precast Concrete Construction System – Precast Components Assembled at Site

- LHP Location: Chennai, Tamilnadu
- No. of Houses: 1152

Precast Concrete Construction System – 3D Volumetric

- LHP Location: Ranchi, Jharkhand
- No of Houses: 1008

Light Gauge Steel Structural System & Pre-engineered Steel Structural SystemAgartala, Tripura

- LHP Location: Agartala, Tripura
- No of Houses: 1000

PVC Stay in Place Formwork System

- LHP Location: Lucknow, Uttar Pradesh
- No of Houses: 1040

Monolithic Tunnel Formwork Technology – LHP Ranchi

In 'TunnelForm' technology, concrete walls and slabs are cast in one go at site giving monolithic structure using high-precision, re-usable, room-sized, Steel forms or molds called 'TunnelForm'. An already established System for building construction in many countries, this system intends to replace the conventional RCC Beam-Column structure which uses steel/plywood shuttering. 'TunnelForm' system uses customized engineered steel formwork consisting of two half shells which are placed together and then concreting is done to form a room size module. Several such modules make an apartment.

Stripping of the formwork from the previous day.

Positioning of the formwork for the current day's phase, with the installation of mechanical, electrical and plumbing services.

Installation of reinforcement in the walls and slabs.

Concreting

Monolithic Tunnel Formwork Technology – LHP Ranchi

Special Features

Facilitating rapid construction of multiple/ mass modular units (similar units).

Making structure durable with low maintenance requirement.

The precise finishing can be ensured with no plastering requirement.

The concrete can be designed to use industrial by-products such as Fly Ash, Ground granulated blast furnace slag (GGBS), Micro silica etc. resulting in improved workability & durability, while also conserving natural resource

Being Box type monolithic structure, it is safe against horizontal forces (earthquake, cyclone etc.)

The large number of modular units bring economy in construction.

Prefabricated Sandwich Panel System – LHP Indore

- An already established System for building construction in China, Australia, African and Gulf countries, this factory made Prefabricated Sandwich Panel System is made out of cement or calcium silicate boards and cement mortar with EPS granules balls, and act as wall panels. These replace conventional brick & mortar walling construction practices and can be used as load-bearing and non-load bearing walling for residential and commercial buildings. For buildings higher than single storey, the system can be used either with RCC or steel framed structure.
- Under this LHP, houses are being constructed using Prefabricated Sandwich Panel System with Pre-Engineered Steel Structural System.
- In this system the EPS Cement Panels are manufactured at the factory in controlled condition, which are then dispatched to the site. The panels having tongue and groove are joint together for construction of the building.

Special Features

Being dry walling system, brings speed in construction, water conservation (no use of water for curing of walling components at site). The sandwich panels have light weight material as core material, which brings resource efficiency, better thermal insulation, acoustics & energy efficiency.

Being light in weight results in lower dead load of building & foundation size.

Precast Concrete Construction System – Precast Components Assembeled at site – LHP Chennai

An already established technology for building construction, Precast concrete construction is a system where the individual precast components such as walls, slabs, stairs, column, beam etc, of building are manufactured in plant or casting yard in controlled conditions. The finished components are then transported to site, erected & installed.

The technology provides solution for low rise to high rise buildings, especially for residential and commercial buildings.

The construction process comprises of manufacturing of precast concrete Columns, Beams and Slabs in steel moulds.

The reinforcement cages are placed at the required position in the moulds.

Concrete is poured and compaction of concrete is done by shutter/ needle vibrator.

Casted components
are then moved to
stacking yard where
curing is done for
requited time and
then these
components are ready
for transportation and
erection at site.

These precast components are installed at site by crane and assembled through in-situ jointing and/or grouting etc.

Precast Concrete Construction System – Precast Components Assembeled at site – LHP Chennai

Special Features

Nearly all components of building work are manufactured in plant/casting yard & the jointing of components is done In-situ leading to reduction in construction time.

The controlled factory environment brings resource optimization, improved quality, precision & finish. The concrete can be designed industrial by-products such as Fly Ash, Ground granulated blast furnace slag (GGBFS), Micro silica etc. resulting in improved workability & durability, while also conserving natural resources.

Eliminates use of plaster.

Helps in keeping neat & clean construction site and dust free environment.

Optimum use of water through recycling.

Use of shuttering & scaffolding materials is minimal.

All weather construction & better site organization.

Precast Concrete Construction System – 3D Volumetric – LHP Ranchi

An already established System for building construction in Europe, Singapore, Japan & Australia, this 3D Volumetric concrete construction is the modern method of building by which solid precast concrete structural modules like room, toilet, kitchen, bathroom, stairs etc. & any combination of these are cast monolithically in Plant or Casting yard in a controlled condition. These Modules are transported, erected & installed using cranes and push-pull jacks and are integrated together in the form of complete building unit.

Subject to the hoisting capacity, building of any height can be constructed using the technology.

Construction Process

Sequential construction in the project here begins with keeping the designed foundation of the building ready, while manufacturing of precast concrete structural modules are taking place at the factory.

Factory finished building units/modules are then installed at the site with the help of tower cranes.

Gable end walls are positioned to terminate the sides of building. Pre stressed slabs are then installed as flooring elements.

Rebar mesh is finally placed for structural screed thereby connecting all the elements together.

Consecutive floors are built in similar manner to complete the structure.

Precast Concrete Construction System – 3D Volumetric – LHP Ranchi

Special Features

About 90% of the building work including finishing is complete in plant/casting yard leading to significant reduction in construction & occupancy time.

The controlled factory environment brings resource optimization, improved quality, precision & finish.

With smooth surface it eliminates use of plaster.

The monolithic casting of walls & floor of a building module reduces the chances of leakage.

The system has minimal material wastage (saving in material cost), helps in keeping neat & clean construction site and dust free environment.

Use of Optimum quantity of water through recycling.

Use of shuttering & scaffolding materials is minimal.

All weather construction & better site organization

Light Guage Steel Structural System & Pre – engineered Steel Structural System – LHP Agartala

An already established System for building construction in Japan, Australia & North America; Light Gauge Steel Frame (LGSF) System uses factory made galvanized light gauge steel components. The components/sections are produced by cold forming method and assembled as panels at site forming structural steel framework upto G+3 building. LGSF is used in combination with pre-engineered steel structural system for buildings above G+3 for longevity, speedier construction, strength and resource efficiency.

Under this Light House Project, houses are being constructed using Light Gauge Steel Frame System (LGSF) with Pre-Engineered Steel Structural System.

Construction Process

The sequence of construction comprises of foundation laying, fixing of Pre-Engineered Steel Structural System, fixing of tracks, fixing of wall panels with bracings as required, fixing of floor panels, decking sheet, fixing of electrical & plumbing services and finally fixing of concrete walling panels with light weight concrete as infill.

The other options of dry walling components such as sandwich panels with insulation material in between can also be used.

Similarly, the floors can either by composite slab/deck slabs/precast hollow core slabs as per the need & requirements.

Light Guage Steel Structural System & Pre – engineered Steel Structural System – LHP Agartala

Special Features

High strength to weight ratio. Due to light weight, significant reduction in design earthquake forces is achieved. Making it safer compared to other structures.

Fully integrated computerized system with Centrally Numerical Control (CNC) machine primarily employed for manufacturing of LGSF sections provide very high Precision & accuracy.

Construction being very fast, a typical four storied building can be constructed within one month.

Structure being light, does not require heavy foundation

Structural element can be transported to any place including hilly areas to remote places easily making it suitable for far flung regions including difficult terrains.

Structure can be shifted from one location to other without wastage of materials.

Steel used can be recycled multiple times

The system is very useful for post disaster rehabilitation work.

PVC Stay in Place Formwork System – LHP Lucknow

- Already in use in Canada & Australia, the plant manufactured rigid poly-vinyl chloride (PVC) based polymer components serve as a permanent stay-in-place finished form-work for concrete walls. The formwork System being used acts as pre-finished walls requiring no plaster and can be constructed instantly.
 - This System is suitable for residential and commercial buildings of any height from low rise to high rise. In order to achieve speedier construction, strength and resource efficiency, the composite structure with Pre-Engineered Steel Structural System as structural members is being used in the present project.

Construction Process

Construction is done in a sequential manner where at first, the Prefabricated PVC Wall panels and Pre-Engineered Steel
Structural Sections as per the design are transported to the Site.

Then, these Sections are erected on the prepared foundation using cranes and required connections.

Floor is installed using decking sheet. Once the structural frame and floor is installed and aligned, wall panels are fixed on decking floor.

The pre-fabricated walling panels having provisions of holes for services conduits, are fixed along with the reinforcement & cavities inside the wall panels are filled with concrete.

Upon installment of wall panels, flooring and ceiling, the finishing work is executed.

PVC Stay in Place Formwork System – LHP Lucknow

Special Features

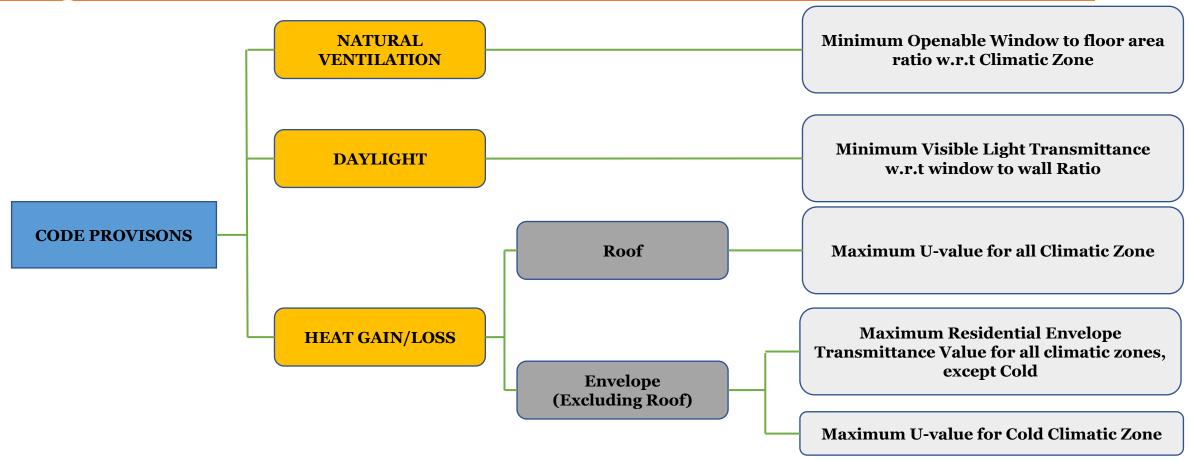
Having formwork already as part of system, the construction of building is faster as compared to conventional buildings. The formwork needs some support only for alignment purpose.

In case of concrete as filling material, the curing requirement of concrete is significantly reduced, thus saving in precious water resources.

The formwork system does not have plastering requirement & gives a very aesthetic look.

07

ENS 2018



Code Provisions by Eco Niwas Samitha for Thermal Comfort in Affordable Housing

SR.NO.	CODE PROVISONS
1	Openable Window to Floor Area Ratio
2	Visible Light Transmission
3	Thermal Transmittance of Roof
4	Residential Envelope Transmittance Value for Building Envelope (Except Roof) for four Climate Zones, namely, Composite Climate, Hot-Dry Climate, Warm-Humid Climate, and Temperature Climate
5	Thermal Transmittance of Building Envelop (Except Roof) for Cold Climate

Openable window to floor area ratio (wfr):

Openable window-to-floor area ratio (WFR) indicates the potential of using external air for ventilation. Ensuring minimum WFR helps in ventilation, improvement in thermal comfort, and reduction in cooling energy

The openable window-to-floor area ratio (WFR) shall not be less than the values given in Table. (Source Adapted from Bureau of Indian Standards (BIS). 2016. National Building Code of India 2016. New Delhi: BIS.)

Climatic Zone	Minimum WFR
Composite	12.50
Hot-Dry	10.00
Warm-Humid	16.66
Temperature	12.50
Cold	8.33

Openable window to floor area ratio (wfr):

EQUA	ΓΙΟΝ	FOR

$$WFR = \frac{A_{openable}}{A_{carpet}}$$

V	Vh	eı	re

WFR	Openable Window to Floor Area Ratio
A _{Openable}	Openable area (m²); it includes the openable area of all windows and ventilators, opening directly to the external air, an open balcony, 'verandah', corridor or shaft; and the openable area of the doors opening directly into an open balcony. Exclusions: All doors opening into corridors. External doors on ground floor, for example, ground-floor entrance doors or back-yard doors.
A _{Carpet}	carpet area of dwelling units; it is the net usable floor area of a dwelling unit, excluding the area covered by the external walls, areas under services shafts, exclusive balcony or verandah area and exclusive open terrace area, but includes the area covered by the internal partition walls of the dwelling unit

VISIBLE LIGHT TRANSMITTANCE (VLT):

Visible light transmittance (VLT) of non-opaque building envelope components (transparent/translucent panels in windows, doors, ventilators, etc.), indicates the potential of using daylight. Ensuring minimum VLT helps in improving day lighting, thereby reducing the energy required for artificial lighting

The VLT requirement is applicable as per the window-to-wall ratio (WWR) of the building. WWR is the ratio of the area of non-opaque building envelope components of dwelling units to the envelope area (excluding roof) of dwelling units.

EQUATION FOR VLT

$$\mathbf{WWR} = \frac{A_{non_opaque}}{A_{envelope}}$$

VISIBLE LIGHT TRANSMITTANCE (VLT):

MINIMUM VISIBLE LIGHT TRASNSMITTANCE (VLT) REQUIREMENT:

The glass used in non-opaque building envelope components (transparent/translucent panels in windows, doors, etc.) shall comply with the requirements given in Table .(Source Bureau of Indian Standards (BIS). 2016. National Building Code of India 2016. New Delhi: BIS)

Window-to-wall Ratio (WWR)	Minimum VLT
0 - 0.30	0.27
0.31 - 0.40	0.20
0.41 - 0.50	0.16
0.51 - 0.60	0.13
0.61 - 0.70	0.11

THERMAL TRANSMITTANCE OF ROOF - U_{roof}:

Thermal transmittance (U_{roof}) characterizes the thermal performance of the roof of a building. Limiting the U_{roof} helps in reducing heat gains or losses from the roof, thereby improving the thermal comfort and reducing the energy required for cooling or heating.

Thermal transmittance of roof shall comply with the maximum U_{roof} value of 1.2 W/m² K.

THERMAL TRANSMITTANCE OF ROOF - U_{roof}:

	$\mathbf{U_{roof}}$	Thermal Transmittance of Roof (W/M ² .K)
EQUATION FOR	$ m A_{roof}$	Total Area of the Roof (m²)
$\mathbf{U_{roof}}$: $\mathbf{U_{roof}} = \frac{1}{A_{roof}} \sum_{i=0}^{n} (Ui \times Ai)$	$\mathrm{U_{i}}$	Thermal Transmittance values of different roof constructions (W/ m^2 .K)
	A_{i}	Areas of different Roof Constructions (m²)

RETV formula takes into account the following:

Residential envelope heat transmittance (RETV) is the net heat gain rate (over the cooling period) through the building envelope (excluding roof) of the dwelling units divided by the area of the building envelope (excluding roof) of the dwelling units. Its unit is W/m^2 .

Heat Conduction through opaque building envelope components (Wall, Opaque, panels in doors, windows, ventilators, etc.

Heat Conduction through non-opaque building, envelope components (transparent/translucent panels of windows, doors, ventilators, etc.)

Solar radiations through non-opaque building envelope components (transparent/translucent panel of windows, doors, ventilators, etc.)

$$RETV = \frac{1}{A_{envelope}} \times [\{a \times \sum_{i=1}^{n} (Aopaque \times Uopaque \times \omega_{i})\} + \{b \times \sum_{i=1}^{n} (Anon_{opaque} \times Unon_{opaque} \times \omega_{i})\} + \{c \times \sum_{i=1}^{n} A_{non_{opaque}} \times SHGCeq \times \omega_{i})\}]$$

RETV EUQATIONS TERMS

$ m A_{envelope}$	envelope area (excluding roof) of dwelling units (m ²). It is the gross external wall area (includes the area of the walls and the openings such as windows and doors).
${ m A_{opaque}}$	areas of different opaque building envelope components (m²)
$ m U_{opaque}$	thermal transmittance values of different opaque building envelope components (W/m^2 . K)
$ m A_{non ext{-}opaque}$	areas of different non-opaque building envelope components (m²)
$ m U_{non ext{-}opaque}$	thermal transmittance values of different non-opaque building envelope components (W/m².K)
$\mathrm{SHGC}_{\mathrm{eq}}$	equivalent solar heat gain coefficient values of different non-opaque building envelope components
$\omega_{ m I}$	orientation factor of respective opaque and non-opaque building envelope components; it is a measure of the amount of direct and diffused solar radiation that is received on the vertical surface in a specific orientation

The coefficients of RETV formula, for different climate zones, are given in Table

Climate Zone	a	b	c
Composite	6.06	1.85	68.99
Hot-Dry	6.06	1.85	68.99
Warm-Humid	5.15	1.31	65.21
Temperature	3.38	0.37	63.69
Cold	Not Applicable for RETV		

THERMAL TRANSMITTANCE OF BUILDING ENVELOPE:

U_{envelope,cold} takes into account the following

Thermal transmittance $U_{envelope,cold}$ characterizes the thermal performance of the building envelope (except roof). Limiting the $U_{envelope,cold}$ helps in reducing heat losses from the building envelope, thereby improving the thermal comfort and reducing the energy required for heating

Heat Conduction through opaque building envelope components (Wall, Opaque, panels in doors, windows, ventilators, etc.

Heat Conduction through non-opaque building, envelope components (transparent/translucent panels of windows, doors, ventilators, etc.)

THERMAL TRANSMITTANCE OF BUILDING ENVELOPE:

The Thermal transmittance of the building envelope (except roof) for cold climate shall comply with the maximum of 1.8 W/m^2 .K

EQUA	TION	FOR
LQUA		TOIL

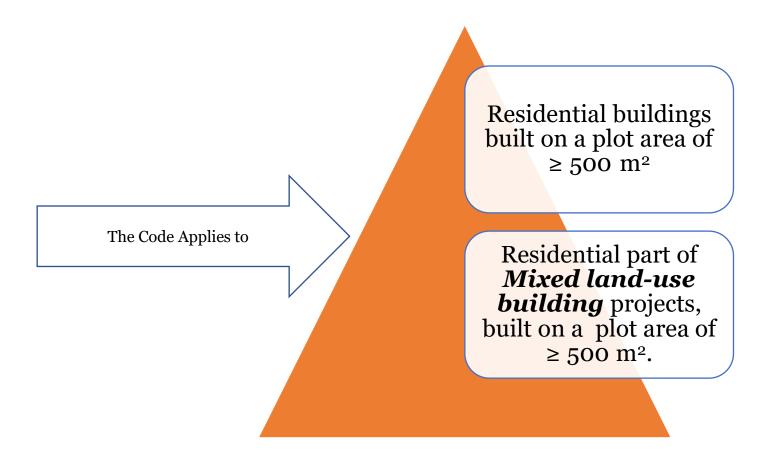
Uenvelope, cold:

 $\frac{\mathbf{U}_{\text{envelope,cold}}}{\frac{1}{A_{\text{envelope}}} \sum_{i=1}^{n} (Ui \times Ai)}$

$ m U_{envelope,cold}$	thermal transmittance of building envelope (except roof) for cold climate (W/ m^2 .K)
$A_{ m envelope}$	envelope area (excluding roof) of dwelling units (m ²). It is the gross external wall area (includes the area of the walls and the openings such as windows and doors)
U_{i}	thermal transmittance of different opaque and non-opaque building envelope components (W/m 2 .K)
A_{i}	area of different opaque and non-opaque opaque building envelope components (m²)

08

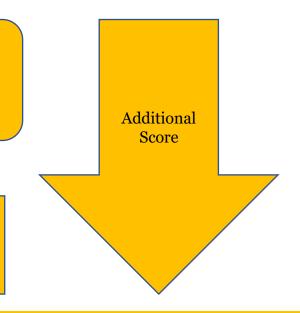
ENS 2021



Eco – Niwas Samhita 2021 Scope

ECO – NIWAS SAMHITA 2021 CODE COMPLIANCE

Prescriptive Method


Compliance Mandatory +

Components	Minimum Points	Additional Points	Maximum Points
Building Envelope			
Building Envelope	47	40	87
Building Services			
Common area and exterior lighting	3	6	9
Elevators	13	9	22
Pumps	6	8	14
Electrical Systems	1	5	6
Indoor Electrical End-Use			
Indoor Lighting		12	12
Comfort Systems		50	50
ENS Score	70	130	200

Point System Method

- Additional Points
- Maximum Points

Renewable Energy Systems Components	Minimum Points	Additional Points	Maximum Points
Solar Hot Water Systems		10	10
Solar Photo Voltaic		10	10
Additional ENS Score		20	

ECO – NIWAS SAMHITA 2021 CODE COMPLIANCE

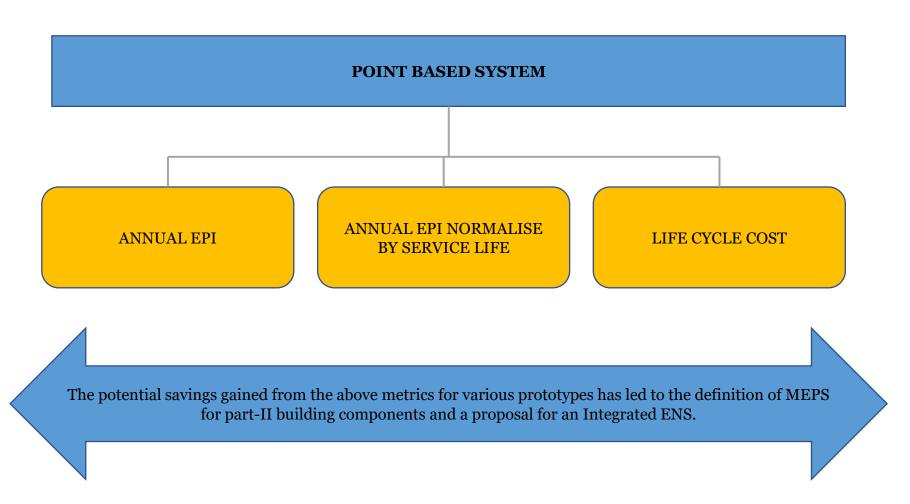
Project Category	Minimum ENS Score
Low rise buildings	47
Affordable Housing	70
High rise buildings	100

Low Rise Buildings: A structure of four stories or less, and/or a structure of up to 15 metres in height (without stilts) and up to 17.5 metres in height (including stilt).

Affordable Housing Projects:

- for Affordable houses are Dwelling Units (DUs)
- for Economically Weaker Section (EWS) category
- For Lower Income Group (LIG) category

High Rise Buildings: A structure with more than four stories and/or a height of more than 15 metres (without stilts) and 17.5 metres (including stilt).



Point Based System

Advantages of Point Based System

- A point system is a less complicated way of assigning weight to building components that are relevant in terms of energy efficiency and compliance. Each dot does not always imply a percentage reduction in energy consumption.
- Singapore began with prescriptive compliance, but as the code grew, the point-based model was adopted as a means of compliance, combining trade-off and prescriptive criteria.

Ease of comprehending by the citizens	•	Easy to comprehend by citizens for both overall energy performance of a residential building and incorporated component level energy efficiency
Trade-off		Trade-off among components is possible but on a stepped EE improvements giving limited flexibility to owner to show compliance Easy to deter possibility of gaming
Compliance	•	Low expertise is required for doing and checking the compliance Require simpler tool for showing compliance Will have only one compliance approach
Future revision		Easy to accommodate additions and removal of components from code. Easier for states to make any revisions/amendments

Mandatory Requirements

- 1. Building Envelope: All of the ENS Part I requirements must be met.
- 2. Power Factor Correction: In all three phases, 0.97 at the point of connection or the state requirement, whichever is more strict.
- 3. Energy Monitoring: Common area lighting (Outdoor lighting, corridor lighting and basement lighting)
 - Elevators
 - Water pumps
 - Basement car parking ventilation system
 - Electricity generated from power back-up
 - Electricity generated through renewable energy systems
 - Lift pressurization system
- 4. Electrical Vehicle Charging Station: If it is installed, it must follow the new criteria for Charging Infrastructure established by the Ministry of Power.
- 5. Electrical Systems: Distribution losses in the ENS building must not exceed 3% of total power demand. At design load, the voltage drop for feeders is less than 2%. At design load, the voltage drop for the branch circuit is less than 3%.

Prescriptive Method

- 1. Building Envelope:
 - ➤ VLT and WFR as per ENS Part 1
 - ➤ RETV (for all climate except cold) max 12 W/m2
 - ➤ Thermal Transmittance for cold max 1.3W/m2K
 - ➤ Roof 1.2W/m2K
- 2. Common Area & Exterior Lighting: Either LPD or Efficacy and use of PhotoSensor

Common Areas	Maximum LPD (W/m²)	Minimum luminous efficacy (lm/W)
Corridor lighting & Stilt Parking	3.0	All the permanently installed lighting fixtures shall use lamps with an efficacy of at least 105 lumens per Watt
Basement Lighting	1.0	All the permanently installed lighting fixtures shall use lamps with an efficacy of at least 105 lumens per Watt

Exterior Lighting Areas	Maximum LPD (in W/m²)
Driveways and parking (open/ external)	1.6
Pedestrian walkways	2.0
Stairways	10.0
Landscaping	0.5
Outdoor sales area	9.0

Prescriptive Method

- 3. Elevators, if applicable::
 - ➤ Lamps: 85l/W
 - > Automatic switch off control
 - ➤ IE4 motors
 - > VFDs
 - > Regenerative drives
 - ➤ Group Automatic operation
- 4. Pumps, if applicable: Min Eff -70% or BEE 5 Star
- 5. Electrical System, if applicable:
 - ➤ Distribution loss less than 3%
 - > Dry Type Transformer as mentioned in table
 - ➤ Oil Type Transformer BEE 5 Star

Point System Method

Minimum Points - are a set of points that must be obtained for each component in order to demonstrate ENS compliance

Additional Points - These are the points provided for implementing additional or improved energy efficiency measures in a component. These points can be combined with others to get the total score for ENS compliance described in section 3.1.2.

The total points available for each component are the **maximum points.**

Components	Minimum Points	Additional Points	Maximum Points
Building Envelope			
Building Envelope	47	40	87
Building Services			
Common area and exterior lighting	3	6	9
Elevators	13	9	22
Pumps	6	8	14
Electrical Systems	1	5	6
Indoor Electrical End-Use			
Indoor Lighting		12	12
Comfort Systems		50	50
ENS Score	70	130	200

- 1 Building Envelope (87 Max Points out of which 47 are essential)
 - ➤ Thermal Transmittance of Roof (7 Points)
 - > RETV (80 Points)

Thermal	ITnon	cmitton	oo of	Poof
HEPTHA	1 1 2 1 1			KIND

Minimum:

Thermal transmittance of roof shall comply with the maximum Uroof value of 1.2 W/m2·K.

Up to 4 Points

Additional:

1 Point for every reduction of 0.23 W/m2·K in thermal transmittance of roof from the Minimum requirement prescribed under §6.1(a).

Maximum 3Points

RETV	
The RETV for the building envelope (except roof) for four climate zones, namely, Composite Climate, Hot-Dry Climate, Warm-Humid Climate, and Temperate Climate, shall comply with the maximum RETV of 15 W/m2.	44 Points
For RETV less than 15 and upto 12 W/m2, score will be calculated by following equation:	
74 − 2 x (RETV) (@2 points per RETV reduction)	Up to 50 Points
Additional: For RETV less than 12 and upto 6 W/m2, score will be calculated by following equation:	
110 – 5 x (RETV) (@ 5 points per RETV reduction)	Up to 80 points
Additional:	
For RETV less than 6 W/m2	80 Points

2 – Common Area and Exterior Lighting (9 Points)

Common Areas	Maxim um LPD (W/m²)	Minimum luminous efficacy (lm/W)
Corridor lighting & Stilt Parking	3.0	All the permanently installed lighting fixtures shall use lamps with an efficacy of at least 85 lumens per Watt
Basement Lighting	1.0	All the permanently installed lighting fixtures shall use lamps with an efficacy of at least 85 lumens per Watt

Exterior Lighting Areas - at least 85 lm/W and maximum LPD requirements given in Table	Maximum LPD (in W/m²)
Driveways and parking (open/ external)	1.6
Pedestrian walkways	2.0
Stairways	10.0
Landscaping	0.5
Outdoor sales area	9.0

Additional Points (6 points)		
Corridor lighting & Stilt Parking	1 Point for installing 95 lm/W Or 2 Point for installing 105 lm/W	
Basement Lighting	1 Point for installing 95 lm/W Or 2 Point for installing 105 lm/W	
Exterior Lighting Areas	2Points for Installing photo sensor or astronomical time switch	

3 – ELEVATORS (22 Points)

Minimum:

Elevators installed in the ENS building shall meet all the following requirements:

- i. Install high efficacy lamps for lift car lighting having minimum luminous efficacy of 85 lm/W
- ii. Install automatic switch-off controls for lighting and fan inside the lift car when are not occupied
- iii. Install minimum class IE 3 high efficiency motors
- iv. Group automatic operation of two or more elevators coordinated by supervisory control

13 Points

Additional:

- Additional points can be obtained by meeting the following requirements:
- ii. Installing the variable voltage and variable frequency drives. (4 points)
- iii. Installing regenerative drives. (3 points)
- iv. Installing class IE4 motors. (2 points)

9 Points

4 – Pumps (14 Points)

Minimum:

Either hydro-pneumatic pumps having minimum mechanical efficiency of 60% or BEE 4 star rated Pumps shall be installed in the ENS building.

6 Points

Additional:

Additional points can be obtained by meeting the following requirements:

- Installation of BEE 5 star rated pumps (5 Points)
- Installation of hydro-pneumatic system for water pumping having minimum mechanical efficiency of 70% (3 Points)

8 Points

5 – Electrical Systems (6 Points)

Minimum:

i. Power transformers of the proper ratings and design must be selected to satisfy the minimum acceptable efficiency at 50% and full load rating. The permissible

loss shall not exceed the values listed in Table 8 for dry type transformers and BEE 4-star rating in Table 9 for oil type transformers.

1 Points

Additional:

Additional points can be obtained by providing all oil type transformers with BEE 5 star rating.

5 Points

6 – Indoor Lightings (12 Points)

Minimum:

All the lighting fixtures shall have lamps with luminous efficacy of minimum 85 lm/W installed in all bedrooms, hall and kitchen.

4 Points

Additional:

Additional points for indoor lighting by installing all lighting fixtures in all bedrooms, hall and kitchen shall have lamps luminous efficacy as per following:

- i. 95 lm/w (3 Points)
- ii. 105 lm/W (8 Points)

Upto 8 Points

7 – Comfort Systems (50 Points) – Ceiling Fans

Minimum:

- i. All ceiling fans installed in all the bedrooms and hall in all the dwelling units shall have a service value as given below:
- For sweep size <1200 mm: equal or greater than 4 m3/minute·Watt
- For sweep size >1200 mm: equal or greater than 5 m3/minute·Watt

i. BEE Standards and Labeling requirements for ceiling fans shall take precedence over the current minimum requirement, as and when it is notified as mandatory.

6 Points

Additional:

Additional points for ceiling fans by installing in all the bedrooms and hall in all the dwellingunits as per following:

- i. 4 Star
- ii. 5 Star 3 Points

Chiller: Minimum SuperECBC Level as mentioned in ECBC 2017

Point System Method

Weighted Average of different Comfort Systems installed in a building allowed for better flexibility (Points Achieved for AC)

Minimum: Unitary Type: 5 Star Split AC: 3 Star 20 Points VRF: 3.28 EER **Chiller: Minimum ECBC Level** Additional 9 points for: Split AC: 4 Star VRF: Not Applicable as on date, however, whenever Star labelling of BEE is launched, 9 Points Star 4 will be applicable Chiller: Minimum ECBC+ Level as mentioned in ECBC 2017 Additional 21 points for: Split AC: 5 Star VRF: Not Applicable as on date, however, whenever Star labelling of BEE is launched, 21 Points Star 5 will be applicable

8 – Solar Water Heating (10 Points)

Minimum:

The ENS compliant building shall provide a solar water heating system (SWH) of minimum BEE 3Star label and is capable of meeting 100% of the annual hot water demand of top 4 floors of the residential building.

or

100% of the annual hot water demand of top 4 floors of the residential building is met by the system using heat recovery

5 Points

Additional:

Additional points can be obtained by installing SWH system as per as per following:

- i. 100% of the annual hot water demand of top 6 floors of the residential building (2 points)
- ii. 100% of the annual hot water demand of top 8 floors of the residential building (5 points)

Upto 5 Points

9 – Solar Photo Voltaic (10 Points)

Minimum:

The ENS compliant building shall provide a dedicated Renewable Energy Generation Zone (REGZ) –

- Equivalent to a minimum of 2 kWh/m2.year of electricity; or
- Equivalent to at least 20% of roof area.

The REGZ shall be free of any obstructions within its boundaries and from shadows cast by objects adjacent to the zone.

5 Points

Additional:

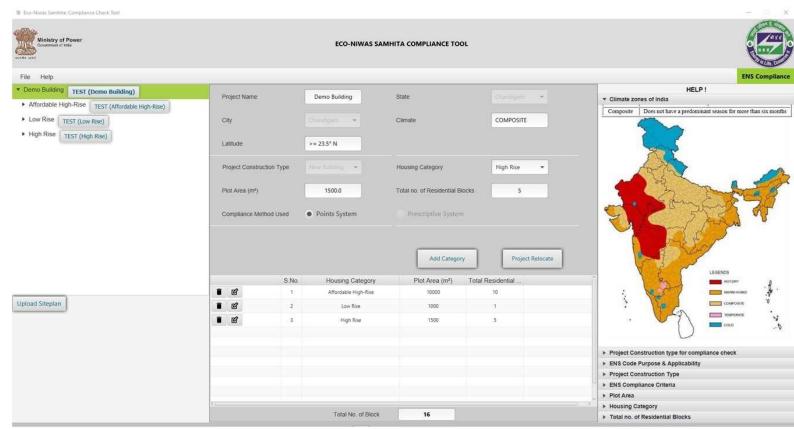
Additional points can be obtained by installing solar photo voltaic as per following:

- i. Equivalent to a minimum of 3 kWh/m2.year of electricity or Equivalent to at least 30% of roof area (2 points)
- ii. Equivalent to a minimum of 4 kWh/m2.year of electricity or Equivalent to at least 40% of roof area (5 points)

Upto 5 Points

09

ENS COMPLIANCE TOOLS



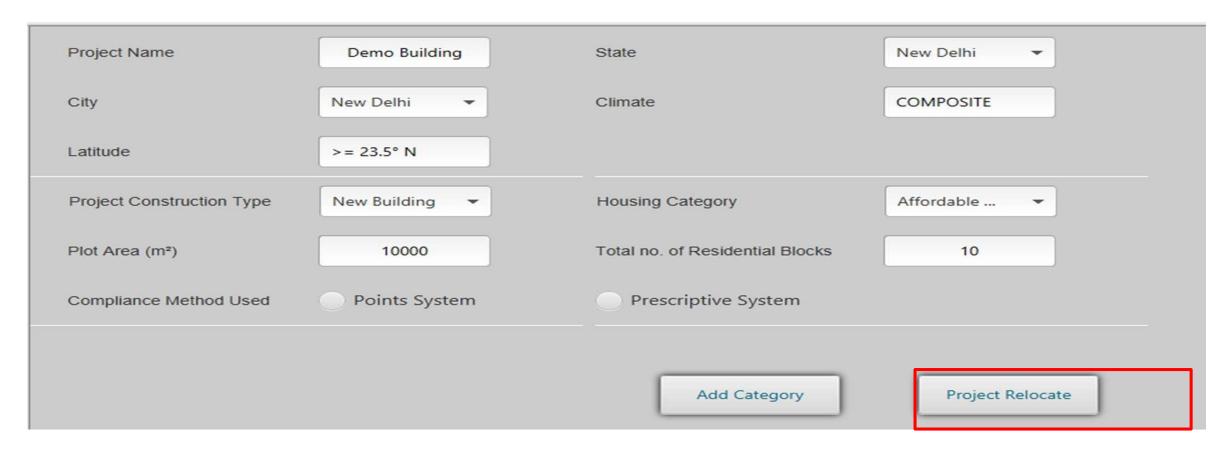
Introduction

- Quick design and compliance checks benchmarks of ECONIWAS SAMHITA.
- 5 key features in consideration:
 - 1. User friendliness
 - 2. Responsiveness
 - 3. Adaptability
 - 4. Dynamism
 - Resourcefulness.
- Compliance for Both Prescriptive and Points Based Systems.
- Categories included:
 - 1. High rise
 - 2. Low Rise
 - 3. Affordable
 - 4. Mixed Use

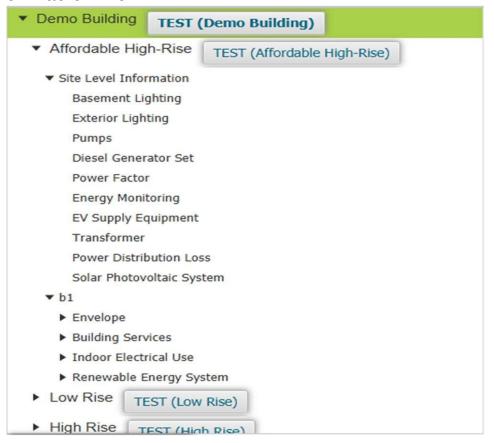
• Provisions for multiple housing category addition for compliance evaluation

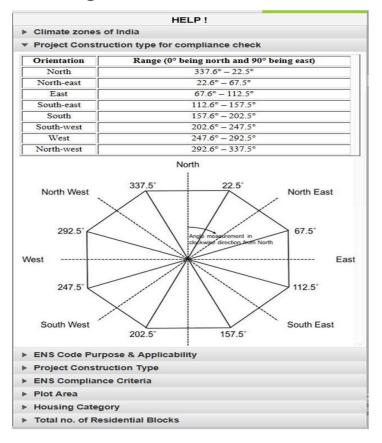
	S.No.	Housing Category	Plot Area (m²)	Total Residential Block	î
	1	Affordable High-Rise	10000	10	
	2	Low Rise	1000	1	
	3	High Rise	1500	5	
<(~
		Total No. of Block	16		

• Easy to navigate tree-view structure



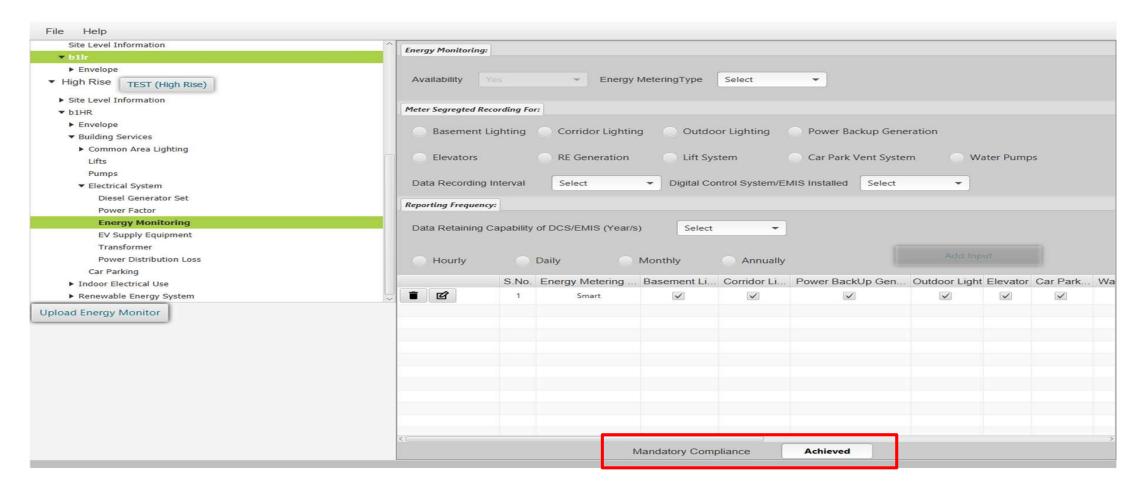
• Project relocation feature for multiple domain use



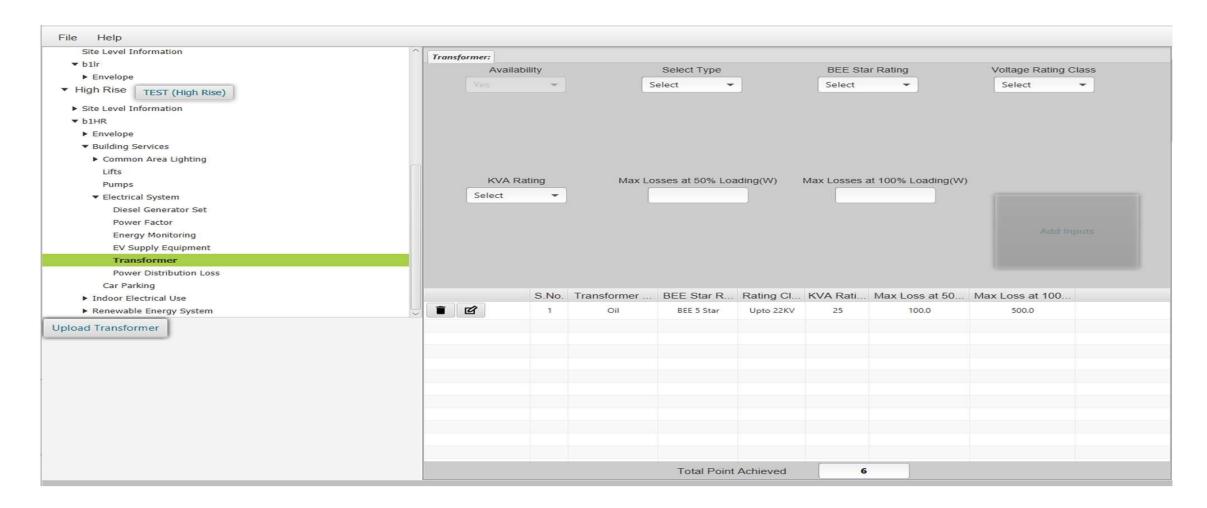


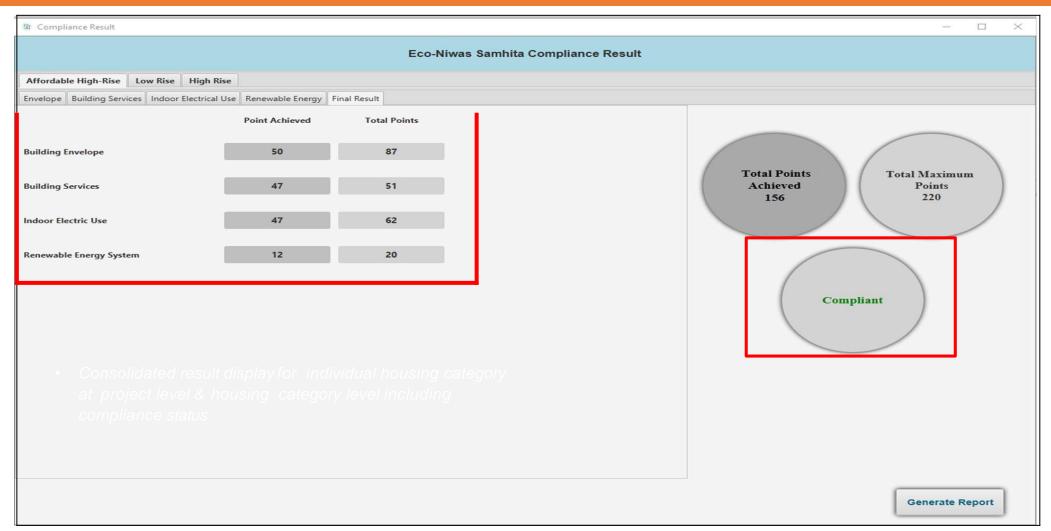
• Segregated site level & block level inputs for ease in information flow

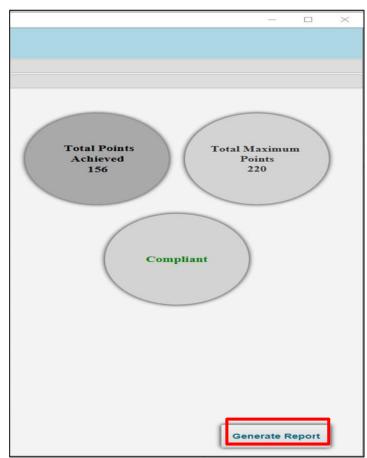
• Comprehensive help panel on each form for easy user referencing

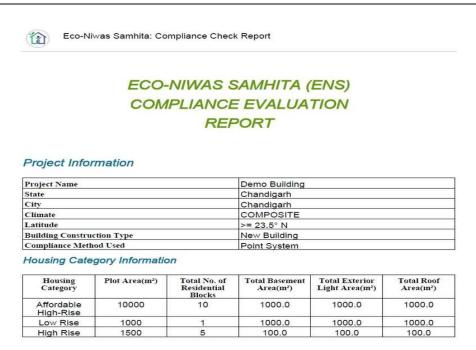


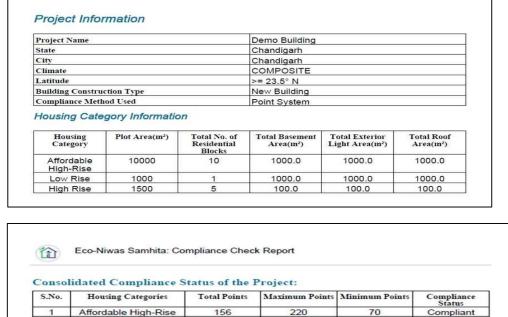
· Component level display for mandatory provisions and points achieved











Provisions for PDF output reporting for each input and corresponding output

Eco-Niwas S	Samhita:	Compliance	Check	Report

1. Affordable High-Rise: Compliance Result

1.1. Building Envelope:

S.No.	Component	Mandatory Requirements	Calculated value	Points Achieved	Maximum Points
1	RETV(W/m².K)	NA	14.59	44	80
2	U-Value Roof(W/m².K)	NA	0.53	6	7
3	WFRop	Achieved	32.0	NA	NA
4	VLT %	Achieved	60.0	NA	NA

1.2. Building Services:

S.No.	Component	Mandatory Requirements	Calculated value	Points Achieved	Maximum Points
1	Exterior Lighting	NA		3	3
2	Basement Lighting	NA		2	3
3	Corridor Lighting	NA		3	3
4	Lift	NA		22	22
5	Pump	NA	-	11	14
6	Diesel Generator Sets	Achieved		NA	NA
7	Power Factor Correction	Achieved	-	NA	NA
8	Energy Monitoring System	Achieved	=	NA	NA
9	Electric Vehicle Supply Equipment	Achieved		NA	NA
10	Transformer	NA		6	6
11	Power Distribution Loss	Achieved	-	NA	NA
12	Car Parking Basement Ventilation	Achieved		NA	NA

1.3. Indoor Electrical End Use:

S.No.	Component	Mandatory Requirements	Calculated value	Points Achieved	Maximum Points
1	Indoor Lighting	NA		12	12
2	Ceiling Fan	NA		7	9
3	Cooling Equipment	NA		28	41

1.4. Renewable Energy System:

S.No.	Component	Mandatory Requirements	Calculated value	Points Achieved	Maximum Points
1	Solar Hot Water Requirements	NA		7	10
2	Solar Photovoltaic System	NA	-	5	10

87

47

Compliant Non Compliant

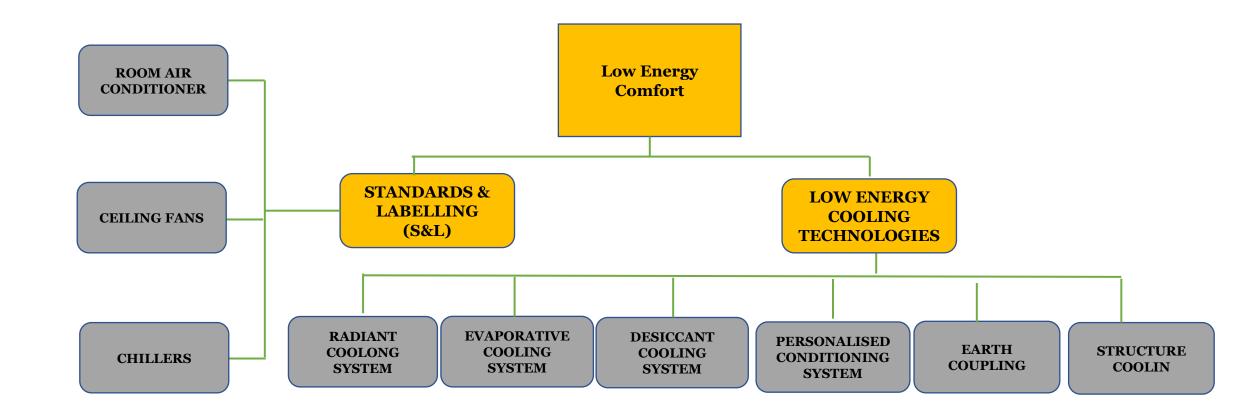
53

Low Rise

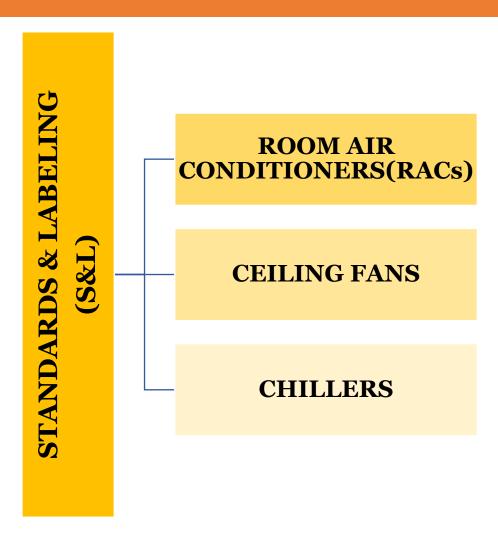
10

LOW ENERGY COMFORT SYSTEM IN

HOUSING

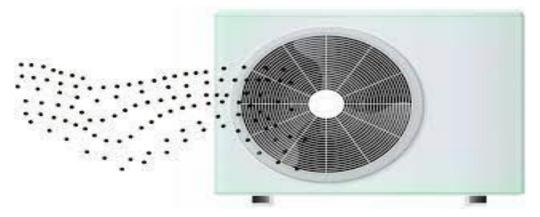


Low Energy Comfort System in Housing



S&L assists consumers in making educated decisions about appliance energy usage and promotes the market penetration of energy efficient appliances and equipment. BEE established the S&L program in 2006.

RACs are the only space cooling appliance under the mandatory labeling scheme. Ceiling fans and variable speed ACs are under the voluntary labeling scheme.



1 - ROOM AIR CONDITIONERS (RACs):

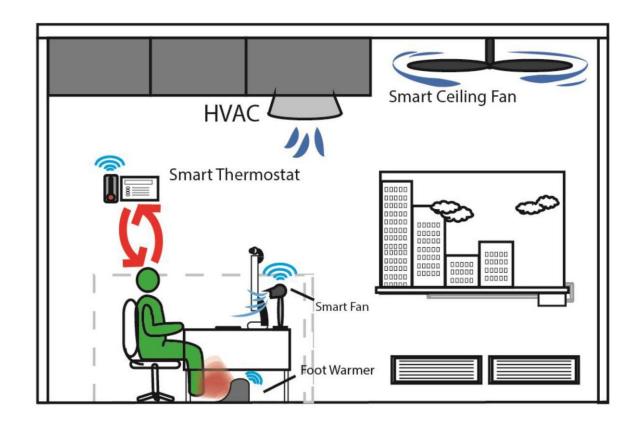
For variable capacity (inverter type) ACs, BEE established a new star grading technique called the Indian Seasonal Energy Efficiency Ratio (ISEER) in 2015.

This metric, which is based on the ISO-16358 standard with revisions to account for India's higher outdoor temperature ranges, will be used instead of the Energy Efficiency Ratio (EER).

ISEER takes into account the range of temperatures in Indian climate zones throughout the year to produce a more realistic estimate of cooling efficiency for the full year.

BEE star rating levels for inverter ACs effective from June 2015 through December 2019 (BEE, 2015)

STAR RATING	MINIMUM ISEER	MAXIMUM ISEER	
1 – Star	3.10	3.29	
2 – Star	3.30	3.49	
3 – Star	3.50	3.99	
4 – Star	4.00	4.49	
5 – Star	4.50	-	



2 - CELING FANS:

Ceiling fans consumed 6% of the energy consumed by residential buildings in 2000, and are predicted to consume 9% by 2020 due to an increase in the number of ceiling fans installed.

Fan effectiveness, rather than efficiency, is a phrase used to describe the volume of air provided per minute per unit of power (m³/minute/W) delivered by a ceiling fan.

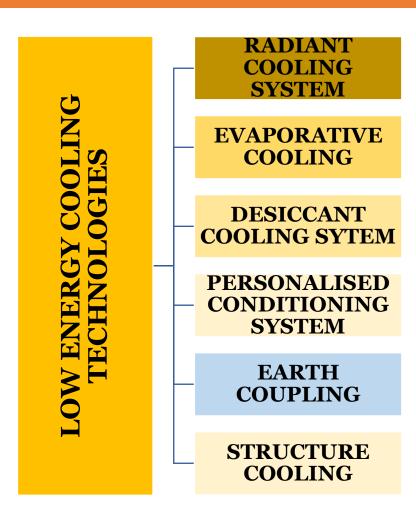
Both the BIS and the BEE give ratings to fans.

3 - CHILLERS:

ECBC (version 2) sets minimum chiller performance efficiency based on Air-conditioning, Heating, and Refrigeration Institute (AHRI) standards that provide test circumstances more reflective of climate in the United States and Europe.

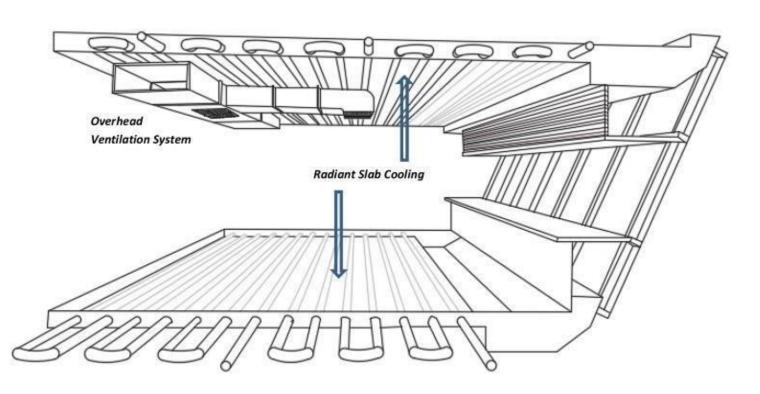
Recognizing the significance of the chiller standard, the ISHRAE has undertaken the responsibility of designing chiller test conditions. The standard, created collaboratively by ISHRAE and the RAMA, establishes a new set of rating and performance testing parameters (temperature, part load weightages, and fouling conditions) for both air and water cooled chillers.

ISHRAE has also created a standard for evaluating and testing variable refrigerant flow (VRF) systems.



Low Energy Cooling Technologies

These are energy-efficient cooling systems that are not commonly used. These can be utilized as stand-alone cooling systems or in conjunction with traditional air conditioning systems.



1 - RADIANT COOLING SYSTEM:

Radiant cooling makes use of actively cooled surfaces to enhance thermal comfort by transferring heat from the human body to the cooled surface via radioactive heat transfer.

Radiant-based HVAC systems absorb heat from the room, which is then removed by chilled water flowing through pipes installed in the floors, walls, or ceilings, or through externally fixed wall and ceiling panels.

The technique makes advantage of water's far higher thermal capacity than air.

2 - EVAPORATIVE COOLING:

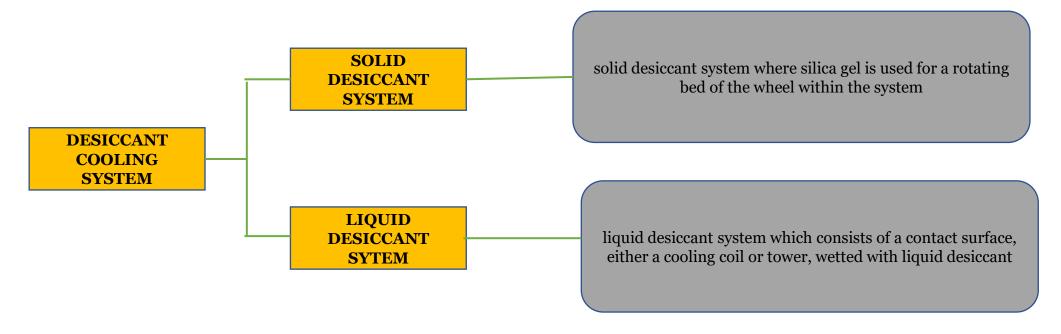
The evaporative cooling technology is based on heat and mass transfer between air and cooling water

DIRECT EVAPORATIVE COOLING

> is based on mechanical and thermal contact between air and water

INDIRECT EVAPORATIVE COOLING

is based on heat and mass transfer between two streams of air, separated by a heat transfer surface with a dry side where only air is cooling and a wet side where both air and water are cooling



3 - DESICCANT COOLING SYSTEM:

A desiccant is a substance, either liquid or solid, which absorbs water molecules from the air and dehumidifies it.

The desiccant system also improves the quality of indoor air. Integration with traditional HVAC systems to remove latent heat can reduce cooling and heating energy usage by up to 30% and 5%, respectively.

PERSONALISED CONDITIONING SYSTEM

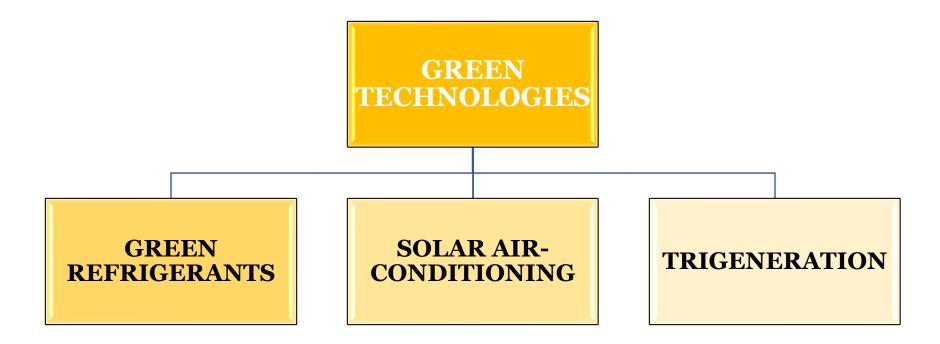
- A customized air-conditioning system at the office produces a microclimatic zone around a single occupant, ensuring that energy is only used where it is required.
- Because of its excellent localized energy utilization, this technology serves to improve thermal comfort for occupants while also reducing energy consumption.

EARTH COUPLING

- Due to the great thermal inertia of soil, the Earth maintains a relatively constant temperature just a few meters below the surface, which is less than the outside temperature in summer and higher in winter.
- By pumping or exchanging heat with the earth, geothermal technologies such as the Earth Air Tunnel Heat Exchanger (EATHE) and Ground Source Heat Pump (GSHP) utilize the earth's temperature stabilizing property to deliver central heating or cooling to a structure.

STRUCTURE COOLING

- By removing heat from the structure, structure cooling tries to lower the mean radiant temperature. This is accomplished by circulating water at room temperature through pipes implanted in slabs to drain heat from the building and prevent it from overheating. The larger thermal mass of water slows the transport of heat from the environment to the structure's innards.
- The heated water runs to the radiator, where it gives away the heat obtained and returns to the tank for recirculation, while the circulated water drains heat from the structure. Because it is a closed loop system, there is only one water requirement. There is no need to cold the water or use refrigerants; just the pump consumes energy.



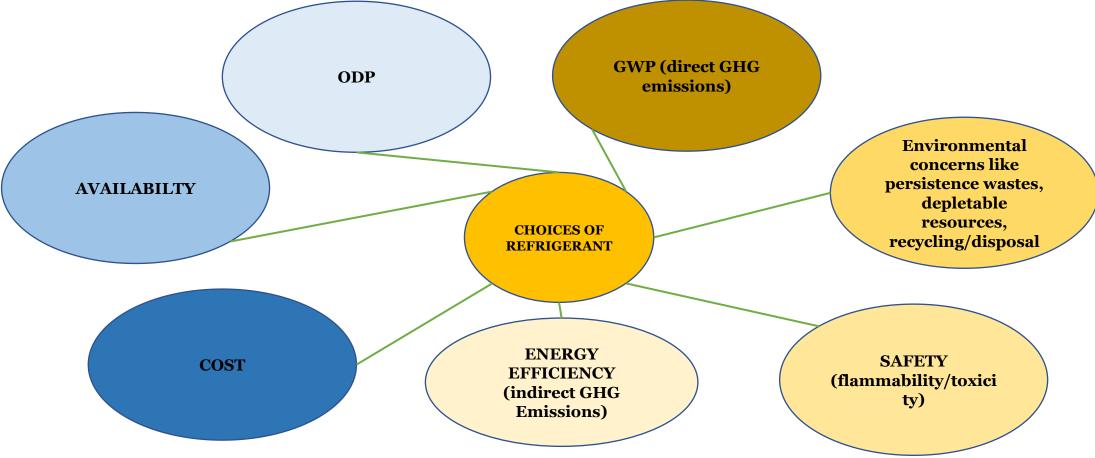
Green technology, such as RACs with green refrigerants, solar air-conditioning, and trigeneration, will have a significant influence on the environment if used wherever practical. India's energy security and contribution to minimizing climate change Changes in the climate.

1 - GREEN REFRIGRANTS:

A green refrigerant would have the benefits of natural refrigerants and also be energy efficient

Natural refrigerants have numerous advantages, including 0% ODP, a low GWP, participation in natural biogeochemical cycles, and the absence of permanent chemicals in the atmosphere, water, or biosphere. Carbon dioxide, ammonia, and hydrocarbons like propane, propene, and isobutene are among them. Natural refrigerants, like as isobutene in residential freezers and ammonia in big cooling systems, are commonly employed in various RAC applications.

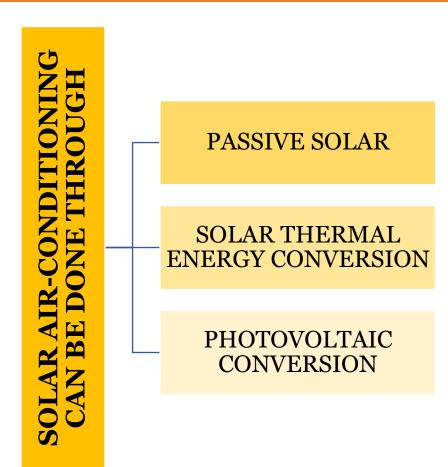
One of the most significant issues with hydrocarbon-based natural refrigerants is the flammability, which can be mitigated by steps such as the use of appropriate materials, the selection of safe components, and operator training. CO2, a natural refrigerant, is inefficient in terms of energy use. When choosing a refrigerant, keep these considerations in mind. (2017, Green-cooling-initiative.org)



A good refrigerant should be nonflammable, non-toxic, and odorless, with a very low GWP and no risk for ozone depletion. Many next-generation refrigeration options are non-flammable and have an ultra-low GWP, making them suited for chiller applications with bigger refrigerant charge sizes, or non-flammable refrigerant mixes with a moderate GWP of less than 750.

The quickest way to accomplish environmental goals is to use nonflammable, low-GWP refrigerants in high-performance products.

TYPES OF REFRIGERANTS AND THEIR GWP (ASSIMILATED FROM AEEE's SECONDARY RESEARCH					
REFRIGERANT	GWP	ENERGY EFFICIENCY	COMPANIES	MARKET STATUS	COST
HCFC-22	High (1800)	High	All Phasing Out	GHG, scheduled for phase out under Montreal protocol	High
HFC-410a	High (1923)	Low	LG, Samsung, GE, Carrier	GHG, Ozone Safe	High
HFC-32	Medium (675)	High	Daikin, Fujitsu, Hitachi, Mitsubishi, Panasonic, Toshiba	Ozone Safe, Mildly flammable	Low
HC-290	Very Low (<5)	High	Godrej	Low GWP, best available for ozone safe in small room AC, highly flammable	Low
HFC BLENDS (DR7, L41, L20)	Medium (300-450)	Medium	DuPont, Honeywell	Low GWP, Low Flammable	Medium
HFOs	Very Low (<4)	Very High	In Research Phase	Environmental friendliness, cost- effectiveness	Low

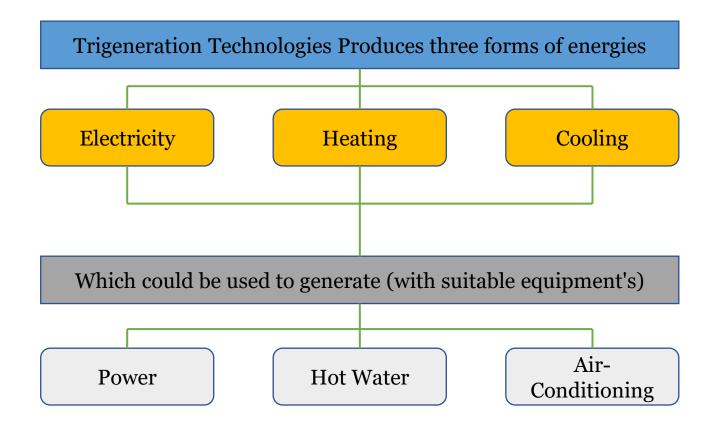


2 - SOLAR AIR-CONDITIONING:

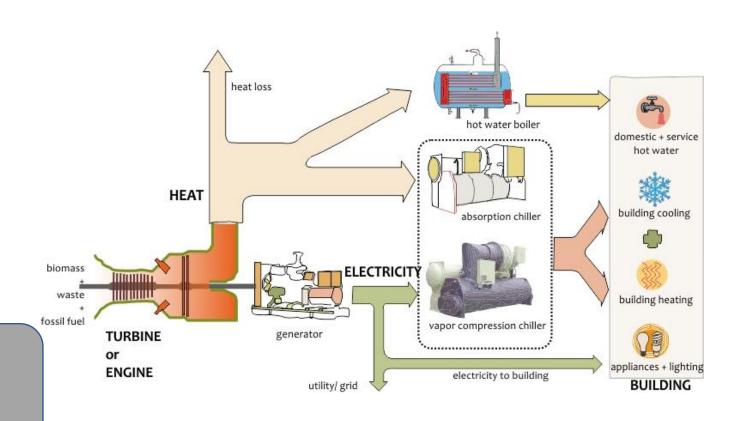
Solar air-conditioning refers to any airconditioning system that uses solar power

The vapor absorption method is used to provide cooling in thermally operated chillers. Instead of employing compressors, desorption is used to enhance the refrigerant's vapor pressure and temperature. Chilled water is produced by thermally driven chillers, which is subsequently utilized to cool hot or warm areas of a building.

Solar absorption chillers have very cheap operating and maintenance expenses, and they use very little electricity. Solar airconditioning has a current market potential of over 0.7 million TR and is growing at a pace of around 17% per year.



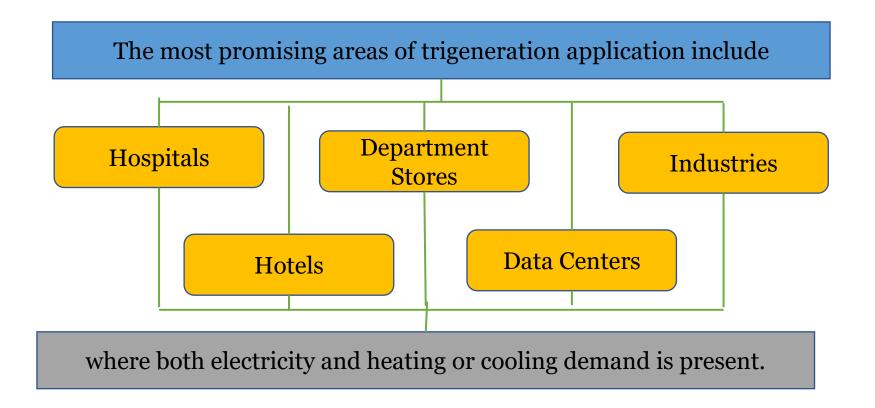
3-TRIGENERATION:



Absorption chillers can employ heat absorbed from waste burning, power generation with generators, or heat generated by solar panels to generate chilled water.

> By utilizing a waste heat recovery system at the end user site, trigeneration systems can achieve great efficiency with no transmission losses.

> > If they can sell to the grid, they could potentially help India meet peak power demand and avoid harmful power outages.



DAY 1

Q&A

DAY 1

Vote of Thanks