

Ministry of Housing and Urban Affairs Government of India

Replicable designs for Thermally Comfortable Affordable housing

Fourth stakeholder meeting | **16 March 2023**

Knowledge Partners:

Ashok B Lall Architects

LEAD Consultancy

Greentech Knowledge Solutions Webinar 4 - March 2023

SESSION I Introduction and Project Overview SESSION II

Webtool Interface – Design and Technical Data

2 | CLIMATE SMART BUILDINGS : Replicable Design options for Thermally Comfortable Affordable Housing

SESSION I

Introduction and Project Overview

Speaker: Niroopa Subrahmanyam

To <u>enhance climate resilience and thermal comfort in buildings</u> by adopting <u>innovative passive measures</u>, locally available and low embodied energy <u>materials</u> coupled with <u>appropriate available technologies of construction</u> for affordable housing.

The main objective is <u>minimizing discomfort hours</u> through use of passive design measures to <u>improve the quality of life</u> while <u>ensuring affordability</u>

WP1	WP2	WP3	WP4	
Documentation of architectural typology, construction technology and materials used for affordable housing under PMAY-U	Develop Architectural Design & Specifications for Replicable Design options for Thermally Comfortable Affordable Housing	Develop Budget Estimates of Replicable Design options for Thermally Comfortable Affordable Housing	Develop BIM and Simulation Models of Replicable Design options for Thermally Comfortable Affordable Housing	Org and Lau Des The Cor Aff

WP4

OBJECTIVE

Development of a navigation Tool for hosting on web-portal

ACTIVITIES

1. Develop a database of design options having cost details, energy performance parameters, other selection related parameters, for web-based tool

2. Develop an intuitive web-based tool to visualize and compare building design options based on performance and other selection criteria. The objective of the tool is to assist the user in taking informed decision.

3. The navigation tool should be **optimized for both PC and portable device (mobile/tablet) browsing.**

DELIVERABLES

• Web based tool to visualize and compare building design options

WP5

OBJECTIVE

Organize Workshops and Event for the Launch

ACTIVITIES

1. Round Table Meetings

With identified stakeholders (e.g., Developers, Financial Institutions, UDDs, PWDs, ULBs, etc.) and incorporate the feedback received from stakeholders in the proposed activities

2 Regional Stakeholder Workshops

To present the outcomes under the assignment and incorporate the feedback received from stakeholders..

3. Training Programs

• Physical and virtual training workshops targeting building design professionals and government stakeholders.

DELIVERABLES

Presentations, workshop material and training manual

WP7

OBJECTIVE

Developing a compendium for Replicable Design options for Thermally Comfortable Homes under PMAY-U

ACTIVITIES

1. To develop and deliver print ready InDesign and hi-res PDF formats (along with a web-friendly PDF version for uploading on PMAY(U) website)

DELIVERABLES

- Two high-resolution compendiums in book format
- Integration of replicable designs developed in WP 6 in the web-tool

Topics covered in Webinar 1, 2 and 3

Webinar 1 - April 2022

Overview of existing design and construction practices to identity gaps in achieving optimal Thermal comfort

Framework for development of type designs

Webinar 2- Nov 2022

Affordable Housing Typologies

Categorization of residential buildings for Type designs

Type design packages Plan sets & Master sets

Overview of Master set

Webinar 3 - Jan 2023

Type designs for different building typologies

Simulation results and Performance Inferences Development of BLC Introduction to Webtool (Beneficiary Led Construction) & type designs Next Steps

7 | CLIMATE SMART BUILDINGS : Replicable Design options for Thermally Comfortable Affordable Housing

Type design overview of Thermal Performance and Carbon Footprint of Construction

Key Performance Indicators

Simulation and Performance concepts

Key Performance Indicators of one type design RETV,WFR,EEI,DDH

What is the purpose of the webtool ?

- This web-based platform is an intuitive web-based **learning tool** that helps designers, builders and promoters of residential buildings to understand the ways of designing thermally comfortable affordable residential buildings.
- The platform provides type designs and the thermal • performance for a wide range of residential building types and sizes of residential units in different climatic regions.
- The tool covers various aspects of design, **bringing to the** user sample designs with detailed simulations and identified criteria for measuring the performance of the building. The objective of the tool is to assist the user in taking informed decision.
- The navigation tool should be optimized for both PC and portable device (mobile/tablet) browsing.

What all will the user get in the webtool?

MASTER SET

- A) Design data Plans, Block Plan ,Window and shading design
- **1** • B) Construction data Working drawing set- Plans, Elevations, Sections, Electrical Layout & Architectural details
- BOQ & Estimate
- Revit file
- C) Simulation Data
- Climate analysis, Schedule of operation, Input Parameters
- *IDF files*
- RAD files

- D) Performance Data
- Key performance indicators RETV, WFR, EEI, DDH,

PLAN SET

• **Design** – *Plans*

Where can the webtool be found?

- The webtool will be **hosted by the Ministry of Housing and Urban Affairs**
- Details will be announced when the website is ٠ ready.

Webtool structure

End of Session

Questions and Feedback

Please follow the link in the chat box to fill the feedback survey:

10 | **CLIMATE SMART BUILDINGS :** *Replicable Design options for Thermally Comfortable Affordable Housing*

SESSION II

Webtool Interface – Design and Technical Data

Speakers: Prof. Ashok Lall & Rathnashree Prakash

Climate Smart Building Designs for Affordable Housing

Back to Back Back to Back Back House

Singly Loaded

Project Background

Climate Smart Building Designs for affordable housing

Tower Stand-alone

Voubly Loaded

TowerConnected

Project Description & Objectives

Climate Smart Building Designs for Affordable housing

The Replicable Design Options for Thermally Comfortable Affordable Housing is a project launched within the Climate Smart Buildings (CSB) Program as part of the Indo-German Technical Cooperation (IGEN).

This project seeks to enhance awareness of thermal comfort, build capacity of stakeholders and government officials at ULB/State/Centre levels, and support the mainstreaming of thermal comfort in affordable housing schemes and policies

Project Team

Project objectives

To enhance climate resilience and thermal comfort in buildings by minimizing discomfort hours.

To adopt passive measures, locally available and low embodied energy materials with appropriate available technologies of construction for affordable housing.

To improve quality of life for end user while ensuring affordability.

To enhance knowledge of stakeholders and government officials through consultations on thermal comfort.

To equip building design professionals with advanced knowledge on thermal comfort and capacitate them to integrate thermal comfort in upcoming affordable housing projects.

Project design principles and performance indicators

Replicable Designs webtool

This web-based platform is a learning tool that helps designers, builders and promoters of residential buildings to understand the ways of designing thermally comfortable affordable residential buildings.

The tool covers various aspects of design for thermally comfortable residential buildings bringing to the user sample designs with detailed simulations and identified criteria for measuring the performance of the building. The platform provides type designs and the thermal performance for a wide range of residential building types and sizes of residential units in different climatic regions.

NEXT

Project contributors

Ministry of Housing and Urban Affairs Government of India

Building materials & Technology Promotion Council Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Deutsche gesellschaft für internationale

Knowledge Partners

Ashok B Lall Architects

Experts in sustainable, affordable and climate conscious design at all scales of development since the last 40 years

www.ashokblallarchitects.com

Lead Consultants Pvt. Ltd.

Pioneer in MEP & Green Consultancy in India since 11 years with offices & projects across the country

http://www.lcsind.org/

Greentech Knowledge Solutions Pvt. Ltd.

Experts in offering solutions for improving energy efficiency in buildings, improving resource efficiency in the production of building materials and deployment of decentralized renewable energy systems.

https://www.gkspl.in/

Project Team

Project design principles and performance indicators

Experts

•	Environmentally sustainable and affordable architecture expert	
•	Architectural Design Expert	
٠	Building Construction Expert	
•	Building Material Expert	
٠	Passive Strategies Expert	
•	Building Energy Analysis Expert	
•	Building Performance Analysis Expert	
•	Structural Systems Expert	
•	Project management	
•	Webtool designer	
•	BIM Expert	

Project Description & Objectives

Project Team

It is essential to understand project design principles and performance indicators before proceeding to the next page

Indicators for assessing thermal comfort performance

Degree Discomfort Hours (DDH)

The difference in temperature between the indoor air temperature and the IMAC – R comfort temperature over 8760 hours (365 days * 24 hours).

Software: Design Builder/Energy Plus

Embodied Energy Intensity (EEI)

Embodied energy share of the highest contributing materials i.e. cement steel, walling blocks.

Embodied energy intensity is being demonstrated as embodied energy per unit carpet area **(MJ / m2)**

Calculation Required :

Mass or volume of Cement, steel and walling materials used are taken from the BOQ. This is multiplied by the corresponding embodied energy coefficients of the material (in MJ/kg or MJ/m3). *Coefficients from secondary sources*

Sum of embodied energy of all materials divided by carpet area gives the embodied energy intensity

Cost Efficiency

Project design principles and performance indicators

Single Family – Plotted Development

SEMI-DETACHED

Height : Upto G+3

Select Dwelling Unit type

Cold climate

Site Map

Climate Zones Map Of India*

*As per NBC and ECBC (2017)

WARM CLIMATES

Composite Climate

Warm and Humid Climate

Hot and Dry Climate

Temperate Climate

- High temperature in Summer and cold in winter
- Low humidity in summers and high in monsoons
- High direct solar radiation in all seasons except monsoons
- Occasional hazy sky hot winds in summer, cold winds in winters and strong winds in monsoon

Disclaimer: The study shows results for representative cities in each climate zone. These are not absolute solutions for all locations falling in a particular climate zone as conditions vary geographically. The methodology and rationale for improving thermal comfort step by step is to be understood from this example and applied for other locations.

Select Dwelling Unit type

Cold climate

Site Map

		Climate Sr	nart Building Designs for	or Affordable Housing
Project Background	Multi Family - Tower Connected	М-4С- 2ВНК	Block Plan	
DESIG	N DATA	ŀ	EY PERFORMANCE IND	ICATORS DATA
Bloc	k Plan			
Unit	t Plan			
3D \	/iews ^			

Site Map

DOWNLOAD

М-4С -2 ВНК						
	DOOR		HEDULE			
TAG	WIDTH (mm)	HEIGHT (mm)	SILL LVL (mm)	LINTEL LVL (mm)		
D1	1000	2550	00	2550		
D2	900	2550	00	2550		
D3	750	2100	70	2170		
D4	900	2100	00	2100		
W1	900	1200	900	2100		
W2	900	900	1200	2100		
W3	450	900	1200	2100		
V1	600	600	1500	2100		

			Climate Sm	art Building Designs f	or Affordable Housing
Project Background	nd Multi Family - Tower Connected		М-4С- 2ВНК	Unit Plan	
DESIGN DATA			KI	EY PERFORMANCE IND	ICATORS DATA
Block Plan					
Unit Plan		*			
3D Views		•			

0 1 3

DOWNLOAD

	M-4C -2 BHK					
	DOOR		HEDULE			
TAG	WIDTH (mm)	HEIGHT (mm)	SILL LVL (mm)	LINTEL LVL (mm)		
D1	1000	2550	00	2550		
D2	900	2550	00	2550		
D3	750	2100	70	2170		
D4	900	2100	00	2100		
W1	900	1200	900	2100		
W2	900	900	1200	2100		
W3	450	900	1200	2100		
V1	600	600	1500	2100		

LEGEND

Load bearing external walls

Non-Load bearing walls *

Structural columns

*It is recommended that the Non-load bearing walls should not be structural to allow flexibility in planning of room sub-division as per user preference.

Climate Smart Building Designs for Affordable Hous					or Affordable Housing
Project Background	Multi Family - Tower Con	nected	М-4С- 2ВНК	3D Views	
DESIGN DATA			KE	Y PERFORMANCE IND	ICATORS DATA
Block Plan					
Unit Plan					
3D Views		*			
		~			

Site Map

DOWNLOAD

M-4C-2 BHK

			Climate Sn	nart Building Designs	for Affordable Ho	ousing
Project Background	Multi Family	- Tower Connected	М-4С- 2ВНК	3D Views		
DESIG	N DATA		к	EY PERFORMANCE IN	DICATORS DATA	
				Thermal Comfort P	erformance	
	_			Visual Comfort Pe	rformance	
			Co	st of construction and	Embodied Energy	
		Light colored finish External shading with sid fins to protect from heat gain Plantation and trees External window with overhang and side fins	de	st of construction and	Embodied Energy	
				P	06	
			and the second second			

	Climate Smart Building Designs for Affordable Housing				
Project Background	Multi	Family - Tower Connected	M-4C- 2BHK	Thermal Comfort Performance	
DESIGN DATA			KEY PERFORMANCE INDICATORS DATA		
				Thermal Comfort Performance	
SELECT UNIT LOCATION				Visual Comfort Performance	
SELECT UNIT ORIENTATION			Cos	st of construction and Embodied Energy	
SELECT UNIT POSITION					
SELECT COMFORT PERFORMANCE	LEVEL				
CLICK TO VIEW RESULTS					

Site Map

DOWNLOAD

X

			Climate S	mart Building Designs for Affordable Housing
Project Background	Multi Family	- Tower Connected	М-4С- 2ВНК	Thermal Comfort Performance
DESIGN	DATA			KEY PERFORMANCE INDICATORS DATA
SELECT UNIT LOCATION STATE NEAREST OF Uttar Pradesh Varanas SELECT UNIT ORIENTATION SELECT UNIT POSITION SELECT COMFORT PERFORMANCE LE CLICK TO VIEW RESULTS			BENGALURU.	Representative City Lucknow Nearest City Varanasi

DOWNLOAD

Climate Zones Map Of India*

*As per NBC and ECBC (2017)

WARM CLIMATES

Composite Climate

Warm and Humid Climate

Temperate Climate

COLD CLIMATE

Disclaimer: The study shows results for representative cities in each climate zone. These are not absolute solutions for all locations falling in a particular climate zone as conditions vary geographically. The methodology and rationale for improving thermal comfort step by step is to be understood from this example and applied for other locations.

ו here are ו**וו**

Climate Smart Building Designs for Affordable Ho				
Project Background Multi		Family - Tower Connected	M-4C- 2BHK	Thermal Comfort Performance
	DESIGN DATA		К	EY PERFORMANCE INDICATORS DATA
SELECT UNIT LC	OCATION			
STATE	NEAREST CITY			
Uttar Pradesh 🛛 🗸	Varanasi 🗸 🗸			
SELECT UNIT ORIENTATION				
	N			
0° Ideal orientation (South) 27	0 Worst Orientation (West)			
SELECT UNIT PO				
SELECT COMFORT PERFO	ORMANCE LEVEL			
CLICK TO VIEW	RESULTS			

	Climate Smart Building Designs for Affordable Housing				
Project Background	Multi I	Family - Tower Connected	M-4C- 2BHK	Thermal Comfort Performance	
	DESIGN DATA		к	EY PERFORMANCE INDICATORS DATA	
SELECT UNIT LOCATI	ON V				
STATE N					
Uttar Pradesh	Varanasi V				
SELECT UNIT ORIENTA	TION				
	N				
0° Ideal orientation (South) 270 W	orst Orientation (West)				
SELECT UNIT POSITI	ON 🗸				
	F F F F F F F F F F F F F F F F F F F				
1 2 3 Middle Floor- Middle Unit Middle Unit Edge Un	r- Middle Floor- it Edge Unit				
CLICK TO VIEW RES	ULIS				

						Climate S	mart Building Designs for Affordable Housing
Project Ba	ackground	Multi	Family -	- Tower Conn	ected	M-4C- 2BHK	Thermal Comfort Performance
	DI	ESIGN DATA					KEY PERFORMANCE INDICATORS DATA
			_				
SE	LECT UNIT LOCATIO	N					
STATE	NE	AREST CITY					
Uttar Prades	h 🔽	Varanasi 🗸 🗸					
SELE		ON V					
		N					
0 ^o Best orientatio	n (South)	st Orientation (West)					
SE	LECT UNIT POSITIO	N					
		4					
Middle Floor- To Middle Unit Mi	p Floor- Top Floor- ddle Unit Edge Unit	Middle Floor- Edge Unit					
SELECT CO	MFORT PERFORMA						
BASIC	IMPROVED	GOOD					
CT 3 : WALL : ALC Wall panel WINDOW : Rolled steel +SGU ROOF INSULATION : EPS insulation +Light colored tile	CT 1 : WALL : AAC WINDOW : UPVC frame +SGU ROOF INSULATION : Foam concrete insulation +Light colored tile	CT 2 : WALL : RCC + Mineral wool WINDOW : UPVC Frame +SGU ROOF INSULATION : Foam concrete insulation +Light colored tile					
CLIC	CK TO VIEW RESU	LTS					

Site Map

DOWNLOAD

CLICK TO VIEW COMPARATIVE RESULTS

Jul

Aug

Sep

Jun

Climate Smart Building Designs for Affordable Housing							
Project Background	Multi Family - Tower Connected	М-4С- 2ВНК	Visual Comfort Performance				
DESIG	IN DATA	K	EY PERFORMANCE INDICATORS DATA				

4. SELECT COMFORT PERFORMANCE LEVEL

Good

UDI Daylight simulation is performed to calculate interior daylight levels in a space for a specific location. Daylight performance of a typical dwelling unit is assessed by the Percentage of area receiving UDI (between Level - 100 Lux to 3000 Lux) in a year for 50% potential daylit time (8 am – 5 pm) UNITS - % SIMULATION REQUIRED – Daylight (UDI) Software : Design Builder, Energy Plus 78,49% 0% 100% LIVING ROOM

Useful Daylight Illuminance

VISUAL COMFORT

Pct Annual Hou	rs0	8	16	25	33

Site Map

Climate Smart Building Designs for Affordable Housi							
Project Background	Multi Family - Tower Connected	M-4C -2BHK	Cost of Construction				
DESIG	GN DATA	K	EY PERFORMANCE INDICATORS DATA				

Good

CLICK TO VIEW RESULTS

LEGEND EEI - Steel

🛑 EEI - Steel	WINDOW : UPVC Frame +SGU
EEI - Walling	ROOF INSULATION : Foam
EEI - Concrete	concrete insulation +Light colored tile

WALL : RCC + Mineral wool

% contrib						
70%	CIVIL WORK (Building Envelope)					
	WINDOWS AND SHADING					
17%	Door, Window and Balcony					
	Shading					
13%	FINISHING (External walls and terracing)					
1%	INSULATION					
	TOTAL COST OF CONSTRUCTION					
	COST / SQM CARPET AREA					
	COST / SQFT CARPET AREA					

3,880

93,420

DOWNLOAD

CLICK TO VIEW COMPARATIVE RESULTS

Climate Smart Building Designs for Affordable Housin							
Project Background	Multi Family - Tower Connected	M-4C -2BHK	Comparative Performance Analysis				
DESIG	IN DATA	K	EY PERFORMANCE INDICATORS DATA				

LEGEND

COMPARATIVE PERFORMANCE ANALYSIS

```
Site Map
```

DOWNLOAD

M-4C-2 BHK

End of Session

Questions and Feedback

Please follow the link in the chat box to fill the feedback survey:

37 | CLIMATE SMART BUILDINGS : Replicable Design options for Thermally Comfortable Affordable Housing

SESSION III

Webtool Interface – Download Data

Speakers: *Rathnashree Prakash & Niroopa Subrahmanyam*

		Climate Smart Building Designs for Affordable Housing
Project Background		
DESIG	N DATA	KEY PERFORMANCE INDICATORS DATA
SELECT UNIT LOCATION		
SELECT UNIT ORIENTATION		
SELECT UNIT POSITION		
SELECT PERFORMANCE LEVEL		
CLICK TO VIEW RESULTS		

DOWNLOAD

×

M-4C-2 BHK

UNIT PLAN

Climate Smart Building Designs for Affordable Hou						
Project Background	Multi Family - Tower Connected	М-4С- 2ВНК	Download sets			
DESIG	N DATA	К	EY PERFORMANCE INDICATORS DATA			

DESIGN DATA

• PLANS

Unit and Block Plan (ACAD File)

CONSTRUCTION DRAWINGS

Dimensioned plan, section, elevation and typical details (PDF Files to scale)

EXTERNAL SHADING

External façade shading location and layout (PDF)

BILL OF QUANTITIES

(Open excel file)

PERFORMANCE DATA

• DAYLIGHT REPORT

- PDF File with UDI graphs
- SENSIBLE HEAT GAIN HISTOGRAM External façade shading location and layout (PDF)

• **DEGREE DISCOMFORT HOURS DATA** PDF File with DDH graphs

EMBODIED ENERGY INTENSITY DATA

Excel file with EEI values for concrete, walling and steel for all performance levels

• ENS COMPLAINCE

Excel file with ENS compliance data (RETV, WWR and U-Value) for all climates

OTHER OPEN FILES

• CLIMATE DATA (Of nearest City) EPW File

• DAYLIGHT .RAD File

•

• SIMULATION DATA (.IDF File)

REVIT FILE .RVT File (Version 2021)

Climate Smart Building Designs for Affordable Hou						
Project Background	Multi Family - Tower Connect	ed		М-4С- 2ВНК	Thermal Comfort Performance	
DESIG	IN DATA			К	EY PERFORMANCE INDICATORS DATA	

Ainistry of Housing and Urban Affairs Government of India

Download Sets

DESIGN DATA

• PLANS Unit and Block Plan (ACAD File)

CONSTRUCTION DRAWINGS

Dimensioned plan, section, elevation and typical details (PDF Files to scale)

EXTERNAL SHADING

External façade shading location and layout (PDF)

BILL OF QUANTITIES

(Open excel file)

TAG	WIDTH (mm)		
D1	1000		
D2	900		
D3	750		
D4	900		
W1	900		
W2	900		
W3	1500		
W4	600		
V1	600		

	TYPOLOGY	TOWER CONNECTED	REPLICABLE	DESIGNS FOR THE	RMALLY COM
MAD OPLIK	BUILDING HEIGHT	STILT + 7 FLOORS	UNIT PLAN		
W-4D-ZDIIK	CARPET AREA	51Sqm / 550Sqft	0 1	3	6

M-4D-2BHK

TYPOLOGY

CARPET AREA

Site Map

DOWNLOAD

Implemented by **Giz** Destachs Gessilschaft ter Internationale Zusammenarbeit (612) 6m

HEIGHT (mm)	CILL LEVEL (mm)	LINTEL LEVEL (mm)
2500	00	2500
2500	00	2500
2100	100	2200
2100	00	2100
1200	900	2100
900	1200	2100
1200	900	2100
1200	900	2100
1000	1500	2500

Project Background	Multi Family - Tower Connected	М-4С- 2ВНК	Thermal Comfort Performance			
DESIG	in data	K	EY PERFORMANCE INDICATORS DATA			

C....

Download Sets

DESIGN DATA

• PLANS

Unit and Block Plan (ACAD File)

CONSTRUCTION DRAWINGS

Dimensioned plan, section, elevation and typical details (PDF Files to scale)

• **EXTERNAL SHADING** External façade shading location and layout (PDF)

BILL OF QUANTITIES

(Open excel file)

"t Duilding Designs for Affordable Housi

Site Map

	nart Building Designs for Affordable Housing		
Project Background	Multi Family - Tower Connecte	d M-4C- 2BHK	Thermal Comfort Performance
DESIG	N DATA	7	EY PERFORMANCE INDICATORS DATA

DESIGN DATA

• PLANS

Unit and Block Plan (ACAD File)

CONSTRUCTION DRAWINGS

Dimensioned plan, section, elevation and typical details (PDF Files to scale)

EXTERNAL SHADING •

External façade shading location and layout (PDF)

BILL OF QUANTITIES

(Open excel file)

Site Map

		Climate Sm	nart Building Designs for Affordable Housing
Project Background	Multi Family - Tower Connected	М-4С- 2ВНК	Thermal Comfort Performance
DESIG	N DATA	Κ	EY PERFORMANCE INDICATORS DATA

DESIGN DATA

PLANS

Unit and Block Plan (ACAD File)

CONSTRUCTION DRAWINGS

Dimensioned plan, section, elevation and typical details (PDF Files to scale)

EXTERNAL SHADING

External façade shading location and layout (PDF)

BILL OF QUANTITIES (Open excel file)

Inermal conductivity (W/mk) C (J/kg.K) Thickness (mm) U-value (W/m2.1) CT1 200mm AAC 642 0.184 1240 200x 100x75 0.77 Density (kg/m3) 642 0.184 1240 200x 100x75 0.77 Density (kg/m3) C11 C12 C11 0.59 Density (kg/m3) C11 C12 C11 C12 C11 C11 C11 C11 C11 C11 C12 C13 C11 C12 C13 C13 C13 C14 C12 C13 C13 C14 C12 C13 C14 C12 C13 C14
CT1 200mm AAC 642 0.184 1240 200x 100x75 0.77 Image: CT1 Image: CT1 <td< th=""></td<>
O.59 O.59 CI1 CI2 CI3 CI1 CI2 CI3 MIDDLE UNIT EDGE UNIT SOUTH WEST CI1 CI2 CI3 MIDDLE UNIT EDGE UNIT EDGE UNIT SOUTH WEST SOUTH WEST SOUTH WEST SOUTH MIDDLE UNIT EDGE UNIT SOUTH WEST SOUTH WEST SOUTH WEST MIDDLE UNIT SOUTH WEST SOUTH WEST MIDDLE UNIT SOUTH WEST SOUTH WEST SOUTH WEST SOUTH WEST SOUTH MIDDLE UNIT SOUTH WEST SOUTH WEST SOUTH MIDDLE UNIT SOUTH
MIDLE OF QUANTITIES - SUMMARY INTENDITORIE CT1 CT2 CT3 CT1 CT2 CT3 MIDDLE UNIT MIDDLE UNIT MIDDLE UNIT EDGE UNIT
CI CI <thci< th=""> CI CI <thc< th=""></thc<></thci<>
CT1CT2CT3CT1CT2CT3MIDDLE UNITMIDDLE UNITMIDDLE UNITEDGE UNITEDGE UNITEDGE UNITSOUTHWESTSOUTHWESTSOUTHWESTSOUTHWESTSOUTHWESTAmountAmountAmountAmountAmountAmountAmountMount
MIDDLE UNIT MIDDLE UNIT MIDDLE UNIT MIDDLE UNIT EDGE UNIT EDGE UNIT EDGE UNIT SOUTH WEST SOUTH MEST SOUTH MEST SOUTH WEST SOUTH MEST
AmountAmountAmountAmountAmountAmount% Contribution of cost% Contribution of cost64%70%70%64%70%71%390280.43509858.01352622.03404202.19544123.92386211.3921%17%12%20%16%11%
AmountAmountAmountAmountAmount% Contribution of cost% Contribution of cost% Contribution of cost% Contribution of cost% Contribution of cost64%70%70%64%70%71%390280.43509858.01352622.03404202.19544123.92386211.3921%17%12%20%16%11%
% Contribution of cost % Contribution of cost<
64% 70% 70% 64% 70% 71% 390280.43 509858.01 352622.03 404202.19 544123.92 386211.39 21% 17% 12% 20% 16% 11%
390280.43 509858.01 352622.03 404202.19 544123.92 386211.39 21% 17% 12% 20% 16% 11%
21% 17% 12% 20% 16% 11%
121844.59 121844.59 121844.59 121844.59 53773.83 53773.83 121844.59 121844.59 121844.59 113719.93 53773.83 53773.83
4516.20 8462.54 4516.20 8462.54 4516.20 8462.54 4619.70 8566.04 4619.70 8566.04 4619.70 8566.04
4649.60 8595.94 4649.60 8595.94 4649.60 8595.94 4753.10 8699.44 4753.10 8699.44 4753.10 8699.44
126360.79 130307.13 126360.79 130307.13 58290.03 62236.37 126464.29 130410.63 126464.29 122285.97 58393.53 62339.87
126494.19 130440.53 126494.19 130440.53 58423.43 62369.77 126597.69 130544.03 126597.69 122419.37 58526.93 62473.27
15% 13% 18% 16% 13% 18%
93417.99 93417.99 93417.99 98055.36 98055.36 98055.36
1% 1% 0% 2017.14 2007.14 2007.14 2007.14
38//.14 38//.14 2190.48 38//.14 3877.14 2190.48
613936.35 617882.69 733513.93 737460.27 506520.53 510466.87 632598.98 636545.32 772520.71 768342.39 544850.75 548797.09
614069.75 618016.09 733647.33 737593.67 506653.93 510600.27 632732.38 636678.72 772654.11 768475.79 544984.15 548930.49
13956.13 14045.82 16673.80 16763.49 11514.86 11604.55 14380.28 14469.97 17560.32 17465.36 12386.00 12475.69
1296.76 1305.09 1549.33 1557.66 1069.87 1078.21 1336.18 1344.51 1631.72 1622.89 1150.83 1159.17 1297.04 1305.37 1549.61 1557.95 1070.15 1078.49 1336.46 1344.79 1632.00 1623.17 1151.12 1159.45

	BILL OF QUANTITIES – MATERIAL SHEET												
		Wallin	g materials			Dens	ity (kg/m3)		i nermai conductivi (W/mK)	ty C ((J/kg.K)	Thickness (mm)	U-value (W/m2.K)
	CT1	200mm	n AAC				642		0.184		1240	200x 100x75	0.77
		B		UANTIT	i IES - Sum	1MARY							0.59
		_	···· •· •										
SUILDING TYPE	CT1	-	CT2	,	CT			1	CT2)	
VISIT-TOWER CONNECTED-2DIR	MIDDLEU	JNIT	MIDDLE	UNIT	MIDDLE	UNIT	EDGE	UNIT	EDGE U	NIT	EDGE	UNIT	1
	SOUTH	WEST	SOUTH	WEST	SOUTH	WEST	SOUTH	WEST	SOUTH	WEST	SOUTH	WEST)	-
tem of Work	Amount	_	Amount		Amount	_	Amount	_	Amount		Amount		
	% Contribution	n of cost	% Contributio	on of cost	% Contributi	on of cost	% Contributi	ion of cost	% Contributio	on of cost	% Contribut	ion of cost	
CIVIL WORK (Building Envelope)	64%		70%		70%		64%		70%		71%		0.9
TOTAL	390280.43		509858.01		352622.03		404202.19		544123.92		386211.39		
	210/		170/		120/		20%		160/		110/		
DOOR, WINDOW & BALCONY	121844.59	121844.59	121844.59	121844.59	53773.83	53773.83	121844.59	121844.59	121844.59	113719.93	53773.83	53773.83	
HADING MIDDLE FLOOR	4516.20	8462.54	4516.20	8462.54	4516.20	8462.54	4619.70	8566.04	4619.70	8566.04	4619.70	8566.04	
SHADING TOP FLOOR (7th floor)	4649.60	8595.94	4649.60	8595.94	4649.60	8595.94	4753.10	8699.44	4753.10	8699.44	4753.10	8699.44	
	126360 79	130307 13	126360 79	130307 13	58290.03	62236 37	126464 29	130/10 63	126464 29	122285 97	58393 53	62330 87	
TOTAL TOP FLOOR (7th floor)	126494.19	130440.53	126494.19	130440.53	58423.43	62369.77	126597.69	130544.03	126597.69	122285.37	58526.93	62473.27	
INISHING (External walls & Terracing)	15%		13%		18%		16%		13%		18%		
TOTAL	93417.99		93417.99		93417.99		98055.36		98055.36		98055.36		
NSULATION	1%		1%		0%		1%		1%		0%		
TOTAL	3877.14		3877.14		2190.48	_	3877.14		3877.14		2190.48		
TOTAL COST OF CONSTRUCTION (INR) - MIDDLE FLOOR	613936.35	617882.69	733513.93	737460.27	506520.53	510466.87	632598.98	636545.32	772520.71	768342.39	544850.75	548797.09	
TOTAL COST OF CONSTRUCTION (INR) - TOP FLOOR	614069.75	618016.09	733647.33	737593.67	506653.93	510600.27	632732.38	636678.72	772654.11	768475.79	544984.15	548930.49	
Jnit Carpet Area (sqm) 44													
Cost/ sqm carpet area (Middle floor)	13953.10	14042.79	16670.77	16760.46	11511.83	11601.52	14377.25	14466.94	17557.29	17462.33	12382.97	12472.66	
Lost/ sqm carpet area (Top floor)	13956.13	14045.82	16673.80	16763.49	11514.86	11604.55	14380.28	14469.97	17560.32	17465.36	12386.00	12475.69	
Sost/soft carpet area	1296 76	1305.09	1549 33	1557 66	1069.87	1078 21	1336.19	1344 51	1631 72	1622.89	1150 83	1159 17	
Cost/ sqm carpet area (Top floor)	1297.04	1305.37	1549.61	1557.95	1070.15	1078.49	1336.46	1344.79	1632.00	1623.17	1151.12	1159.45	

Note:

ncludes civil structure, building envelop, door-window and external finishing costs

ncludes cost of ECMs (Civil)

Vaterial and labour cost is considered for most items

Excludes internal finishing costs except Internal plaster Excludes common area costs like corridor, staircase, lobby etc

ncludes proportionate cost of terracing distributed over 4 floors

Site Map

Climate Smart Building Designs for Affordable Ho						
Project Background	Multi Family - Tower Connected	M-4C-2BHK Thermal Comfort Performance				
DESIG	N DATA	KI	EY PERFORMANCE INDICATORS DATA			

PERFORMANCE DATA

hedule of Operation

SCHEDULE OF OPERATIONS INPUT PARAMETERS Inputs CT3 CT2 West South West ick RCC wall + 40mm thick Mineral wool 150mm thick ALC wall panel U-value : 0.59 W/m2k U-value : 0.9 W/m2k RCC slab + 100mm thick Foam concrete 23:00 24:00 125mm thick RCC slab +50mm EPS insulation insulation U-value : 0.593 W/m2k U-value : 0.593 W/m2k 125mm thick RCC slab Unit - U Value = 5.7 W/m2k, SHGC = 0.8, VLT=0.85 Unit - U Value = 5.7 W/m2k, SHGC = 0.8, VLT=0.85 Overhang of 600mm+Side fins of Overhang of 600mm+Side fins of Overhang of 600mm+Side mm+Side 450mm depth + Front roll down 450mm depth + Front roll down fins of 450mm depth n depth bamboo screen bamboo screen of 1200 Slab projection of 1200 mm Slab projection of 1200 mm Slab projection of 1200 mm ed shading depth+Fixed shading screen + depth+Fixed shading screen + depth+Fixed shading screen Front roll down bamboo screen Front roll down bamboo screen UPVC Frame Rolled Steel 00.0 4.0 Ceiling fan - 65W Television - 56W Refrigerator - 185W INAAC D

			INFU	
S.No	Description	C	Г1	
		South	West	South
			B	uilding Envelope
1	Exterior Wall	200mm thic	k ACC Block	150mm thi
		U-value : 0	.77 W/m2k	
2	Roof construction	125mm thick RCC slab + 10 insul	00mm thick Foam concrete ation	125mm thick
		U-value : 0.	593 W/m2k	
3	Floor slab			
	Glazing (Exterior)			Single glazed
4	Glazing (Interior)			Single glazed
5	Window Shading	Overhang of 600mm+Side fins of 450mm depth	Overhang of 600mm+Side fins of 450mm depth + Front roll down bamboo screen	Overhang of 600 fins of 450mm
6	Balcony	Slab projection of 1200 mm depth+Fixed shading screen	Slab projection of 1200 mm depth+Fixed shading screen + Front roll down bamboo screen	Slab projection mm depth+Fixed screen
7	External doors & window frames and shutters	UPVC	Frame	
	•	•		Electrical loads
8	Interior Lighting power Density (W/m2)			
9	Equipment loads			
				Ventilation
10	Adamatica Countrate Tourisant	1		

DOWNLOAD

Site Map

		Climate Sm	nart Building Designs for Affordable Housing
Project Background	Multi Family - Tower Connected	M-4C -2BHK	Thermal Comfort Performance
DESIG	N DATA	K	EY PERFORMANCE INDICATORS DATA

PERFORMANCE DATA

- DAYLIGHT REPORT PDF File with UDI graphs and Master Sheet Excel
- SENSIBLE HEAT GAIN HISTOGRAM External façade shading location and layout (PDF)
- DEGREE DISCOMFORT HOURS DATA PDF File with DDH graphs

EMBODIED ENERGY INTENSITY DATA

Excel file with EEI values for concrete, walling and steel for all performance levels

ENS COMPLAINCE ٠

Excel file with ENS compliance data (RETV, WWR and U-Value) for all climates

Climate Smart Building Designs for Affordable H					
Project Background	Multi Family - Tower Connected	М-4С- 2ВНК	Thermal Comfort Performance		
DESIG	N DATA	К	EY PERFORMANCE INDICATORS DATA		

PERFORMANCE DATA

DAYLIGHT REPORT ٠

PDF File with UDI graphs and Master Sheet Excel

- SENSIBLE HEAT GAIN HISTOGRAM • External façade shading location and layout (PDF)
- DEGREE DISCOMFORT HOURS DATA PDF File with DDH graphs

EMBODIED ENERGY INTENSITY DATA

Excel file with EEI values for concrete, walling and steel for all performance levels

ENS COMPLAINCE ٠

Excel file with ENS compliance data (RETV, WWR and U-Value) for all climates

Climate Smart Building Designs for Affordable					
Project Background	Multi Family - Tower Connected	М-4С- 2ВНК	Thermal Comfort Performance		
DESIG	N DATA	KI	EY PERFORMANCE INDICATORS DATA		

PERFORMANCE DATA

- DAYLIGHT REPORT
- PDF File with UDI graphs and Master Sheet Excel
- SENSIBLE HEAT GAIN HISTOGRAM External façade shading location and layout (PDF)
- DEGREE DISCOMFORT HOURS DATA PDF File with DDH graphs

EMBODIED ENERGY INTENSITY DATA

Excel file with EEI values for concrete, walling and steel for all performance levels

• ENS COMPLAINCE

Excel file with ENS compliance data (RETV, WWR and U-Value) for all climates

Site Map

Climate Smart Building Designs for Affordable Hou					
Project Background	Multi Family - Tower Connected	М-4С- 2ВНК	Thermal Comfort Performance		
DESIG	N DATA	K	EY PERFORMANCE INDICATORS DATA		

PERFORMANCE DATA

- DAYLIGHT REPORT
- PDF File with UDI graphs and Master Sheet Excel
- SENSIBLE HEAT GAIN HISTOGRAM External façade shading location and layout (PDF)
- DEGREE DISCOMFORT HOURS DATA PDF File with DDH graphs

EMBODIED ENERGY INTENSITY DATA

Excel file with EEI values for concrete, walling and steel for all performance levels

• ENS COMPLAINCE

Excel file with ENS compliance data (RETV, WWR and U-Value) for all climates

				MIDDLE UNIT				
nbodied energy-	CT1- AAC							
pe	Quantity	Unit	Density kg/m3 (IS 875 (Part 1) : 1987. 2008)	Weight (kg)	Embodied energy (MJ)/kg	Embodied energy (MJ)/m3	Total embodied energy (MJ)	Embodied energ per m2 of carpet area
NCRETE								-
ment	4.15	m3	1440.0	5976.0	3.99		23844.24	541.9
ne agg. / sand	4.15	m3	1840.0	7636.0	0.02		155.77	3.5
arse agg.	8.30	m3	1600.0	13280.0	0.22		2921.60	66.40
					Embodied en	ergy for concrete	26921.61	611.8
ALLING								
ment	0.46	m3	1440.0	661.9	3.99		2641.10	60.02
ne agg. / sand	2.34	m3	1840.0	4303.4	0.02		87.79	2.00
AC	14.01	m3	642.0	8991.2		1500.00	21007.50	477.44
					Embodied e	energy for walling	23736.39	539.4
EEL								
eel in RCC	1865	kg		1865	34.24		63857.60	1451.3
						τοται	114515.60	2602.6

					Embodied	Embodied		
					energy (MI)/kg	energy (MI)/m3		
					energy (wib)/ kg	energy (wo)/mo		Embodied energ
			Density kg/m3 or				Total embodied	per m2 of carpe
pe	Quantity	Unit	kg/m2	Weight (kg)			energy (MJ)	area
NCRETE								
ment	5.24	m3	1440.0	7540.4	3.99		30086.12	683.7
ne agg. / sand	5.24	m3	1840.0	9634.9	0.02		196.55	4.4
arse agg.	10.47	m3	1600.0	16756.4	0.22		3686.41	83.7
					Embodied en	ergy for concrete	33969.08	772.0
ALLING								
ment	0.46	m3	1440.0	661.9	3.99		2641.10	60.0
ne agg. / sand	2.34	m3	1840.0	4303.4	0.02		87.79	2.0
ineral wool	2.07	m3	73.5	152.0	16.60		2523.17	57.3
/p board	51.70	m2	10.8	555.8	3.30		1834.06	41.0
AC	6.62	m3	642.0	4250.7		1500.00	9931.50	225.
					Embodied e	nergy for walling	7086.11	386.
EEL								
eel in RCC	2525.7875	kg		2525.7875	34.24		86482.96	1965.
						TOTAL	127538.15	3124 3

MIDDLE UNIT

LC wall panel intity 4.15 4.15	Unit m3	Density kg/m3 (IS 875 (Part 1) : 1987. 2008) 1440.0	Weight (kg) 5976.0	Embodied energy (MJ)/kg 3.99	Embodied energy (MJ)/m3	Total embodied energy (MJ) 23844-24	Embodied energy per m2 of carpet area
4.15 4.15	Unit m3	Density kg/m3 (IS 875 (Part 1) : 1987. 2008) 1440.0	Weight (kg) 5976.0	Embodied energy (MJ)/kg 3.99	Embodied energy (MJ)/m3	Total embodied energy (MJ)	Embodied energy per m2 of carpet area
4.15	m3	1440.0	5976.0	3.99		23844.24	541.01
4.15 4.15	m3	1440.0	5976.0	3.99		23844.24	E 41.01
4.15						23044.24	541.91
	m3	1840.0	7636.0	0.02		155.77	3.54
8.30	m3	1600.0	13280.0	0.22		2921.60	66.40
				Embodied en	ergy for concrete	26921.61	611.85
0.46	m3	1440.0	661.9	3.99		2641.10	60.02
2.34	m3	1840.0	4303.4	0.02		87.79	2.00
5.54	m3	642.0	3555.4		1500.00	8307.00	188.80
6.62	m3	642.0	4250.7		1500.00	9931.50	225.72
				Embodied e	energy for walling	20967.39	476.53
	0.46 2.34 5.54 6.62	8.30 m3 0.46 m3 2.34 m3 5.54 m3 6.62 m3	8.30 m3 1600.0 0.46 m3 1440.0 2.34 m3 1840.0 5.54 m3 642.0 6.62 m3 642.0	0.46 m3 1600.0 13280.0 0.46 m3 1440.0 661.9 2.34 m3 1840.0 4303.4 5.54 m3 642.0 35554 6.62 m3 642.0 4250.7	8.30 m3 1600.0 13280.0 0.22 Embodied en 0.46 m3 1440.0 661.9 3.99 2.34 m3 1840.0 4303.4 0.02 5.54 m3 642.0 3555.4 6.62 m3 642.0 4250.7 Embodied en	8.30 m3 1600.0 13280.0 0.22 Embodied energy for concrete 0.46 m3 1440.0 661.9 3.99 2.34 m3 1840.0 4303.4 0.02 5.54 m3 642.0 3555.4 1500.00 6.62 m3 642.0 4250.7 1500.00 Embodied energy for walling	8.30 m3 1600.0 13280.0 0.22 2921.60 Embodied energy for concrete 26921.61 0.46 m3 1440.0 661.9 3.99 2641.10 2.34 m3 1840.0 4303.4 0.02 87.79 5.54 m3 642.0 3555.4 1500.00 8307.00 6.62 m3 642.0 4250.7 1500.00 9931.50 Embodied energy for walling 20957.39

Туре	Quantity	Unit	Density kg/m3 (IS 875 (Part 1) : 1987. 2008)	Weight (kg)	Embodied energy (MJ)/kg	Embodied energy (MJ)/m3	Total embodied energy (MJ)	Embodied energ per m2 of carpet area
CONCRETE								
Cement	5.48	m3	1440.0	7887.8	3.99		31472.24	715.2
Fine agg. / sand	5.48	m3	1840.0	10078.8	0.02		205.61	4.6
Coarse agg.	10.96	m3	1600.0	17528.4	0.22		3856.25	87.6
				6	mbodied ener	gy for concrete	35534.10	807.5
WALLING					-	_		
Cement	0.46	m3	1440.0	661.9	3.99		2641.10	60.0
Fine agg. / sand	2.34	m3	1840.0	4303.4	0.02		87.79	2.0
Mineral wool	2.76	m3	73.5	202.9	16.60		3367.48	76.5
Gyp board	69.00	m2	10.8	741.8	3.30		2447.78	55.6
AAC	6.62	m3	642.0	4250.7		1500.00	9931.50	225.7
					Embodied ene	ergy for walling	18475.64	419.9
STEEL								
Steel in RCC	2668.9125	kg		2668.9125	34.24		91383.56	2076.9
						τοτοι	145292 20	2204.2

				EDGE UNI	т					60.0
Embodied energy-	CT3- ALC wall p	anel								2.0
		D	ensity g/m3 (IS 875		Embodied energy	Embodied energy		Embodied energy		55.2
-		(F	Part 1) :		(MJ)/kg	(MJ)/m3	Total embodied	per m2 of carpet		225.7
Туре	Quantity	Unit 1	987.2008)	Weight (Kg)			energy (MJ)	area		383.0
CONCRETE	1									
Cement	4.32	m3	1440.0	6213.6	3.99		24792.26	563.4		
Fine agg. / sand	4.32	m3	1840.0	7939.6	0.02		161.97	3.6		1937.5
Coarse agg.	8.63	m3	1600.0	13808.0	0.22		3037.76	69.0		3082.0
				6	mbodied ener	gy for concrete	27991.99	636.1		
WALLING										<u> </u>
Cement	0.46	m3	1440.0	661.9	3.99		2641.10	60.0		
Fine agg. / sand	2.34	m3	1840.0	4303.4	0.02		87.79	2.0		
ALC panel	5.88	m3	642.0			1500.00	8824.50	200.5		
AAC	6.62	m3	642.0	4250.7		1500.00	9931.50	225.7		m2 of carpet
	0.04		0.1210	425017	Embodied one	1500.00	21484.89	499.2		a
STEEL					Embouled ene	arby for wanning	21101.05	400.2		
Steel in RCC	1960	kg		1960	34.24		67110.40	1525.2		541.9
							1			3.5
										66.40
						Embodie	d energy for conc	rete 26921	.61	611.8
ALLING										
ment		0.	.46 m3	1440.	.0 661	.9	3.99	2641	.10	60.02
he age. / s	and	2.	.34 m3	1840	0 4303	.4	0.02	87	.79	2.0
C papel		5	25 m3	642	0 3370	5	150	0.00 7875	.00	178.9
in passes		5.	62 m3	642	0 4250	7	150	0.00 9931	50	225.7
<u>«</u>		0.		042.	4230		150	0.00 5551	20	465.7
						Embod	ied energy for wa	111ng 20535	.37	466.7

				EDGE UNI	т					60.02
bodied energy-	CT3- ALC wall p	anel								2.00
boarco cricigy			Density kg/m3 (IS 875 Part 1) :		Embodied energy (MJ)/kg	Embodied energy (MJ)/m3	Total embodied	Embodied energy		55.22 40.14
pe .	Quantity	Unit 1	1987. 2008)	Weight (kg)			energy (MJ)	area		225.72
NCRETE										383.09
ment	4.32	m3	1440.0	6213.6	3.99		24792.26	563.4		
e agg. / sand	4.32	m3	1840.0	7939.6	0.02		161.97	3.6		1937.51
arse agg.	8.63	m3	1600.0	13808.0	0.22		3037.76	69.0		3082.00
				E	mbodied ener	gy for concrete	27991.99	636.1		
ALLING										
ment	0.46	m3	1440.0	661.9	3.99		2641.10	60.0		
e agg. / sand	2.34	m3	1840.0	4303.4	0.02		87.79	2.0		
C panel	5.88	m3	642.0			1500.00	8824.50	200.5		bodied energy
с	6.62	m3	642.0	4250.7		1500.00	9931.50	225.7		m2 of carpet
					Embodied ene	ergy for walling	21484.89	488.2		a
EL										
el in RCC	1960	kg		1960	34.24		67110.40	1525.2		541.91
										3.54
										66.40
_						Embodie	d energy for conc	rete 26921	.61	611.85
ALLING										
ment		0).46 m3	1440.	0 661	.9	3.99	2641	.10	60.02
ne agg. / s	and	2	2.34 m3	1840.	0 4303	.4 (0.02	87	.79	2.00
.C panel		5	5.25 m3	642.	0 3370	.5	150	0.00 7875	.00	178.98
۹C		6	5.62 m3	642.	0 4250	.7	1500	0.00 9931	.50	225.72
						Embodi	ied energy for wa	lling 20535	.39	466.71
EEL										
eel in RCC		1	865 kg		186	i5 34	4.24	63857	.60	1451.31

DOWNLOAD

	EDGE UNI	т			
y (IS 875) : 2008)	Weight (kg)	Embodied energy (MJ)/kg	Embodied energy (MJ)/m3	Total embodied energy (MJ)	Embodied energ per m2 of carpet area
1440.0	6213.6	3.99		24792.26	563.4
1840.0	7939.6	0.02		161.97	3.6
1600.0	13808.0	0.22		3037.76	69.0
	E	mbodied energ	gy for concrete	27991.99	636.1
1440.0	661.9	3.99		2641.10	60.0
1840.0	4303.4	0.02		87.79	2.0
642.0	9286.5		1500.00	21697.50	493.1
		Embodied ene	rgy for walling	24426.39	555.1
	1960	34.24		67110.40	1525.2
			TOTAL	119528.78	2716.5

odied energ m2 of carpet

541.91 3.54 66.40 611.85 60.02 2.00 464.35 526.37

1451.31 2589.54

bodied energ m2 of carpet

674.37 82.63 761.41

				EDGE UNI	т			
Embodied energy	- CT1- AAC							
Туре	Quantity	Unit	Density kg/m3 (IS 875 (Part 1) : 1987. 2008)	Weight (kg)	Embodied energy (MJ)/kg	Embodied energy (MJ)/m3	Total embodied energy (MJ)	Embodied en per m2 of car area
CONCRETE								
Cement	4.32	m3	1440.0	6213.6	3.99		24792.26	56
Fine agg. / sand	4.32	m3	1840.0	7939.6	0.02		161.97	
Coarse agg.	8.63	m3	1600.0	13808.0	0.22		3037.76	6
				E	Embodied energ	gy for concrete	27991.99	63
WALLING								
Cement	0.46	m3	1440.0	661.9	3.99		2641.10	6
Fine agg. / sand	2.34	m3	1840.0	4303.4	0.02		87.79	
AAC	14.08	m3	642.0	9040.0		1500.00	21121.50	48
					Embodied ene	ergy for walling	23850.39	54
STEEL								
Steel in RCC	1960	kg		1960	34.24		67110.40	152
						TOTAL	110053 70	

				EDGE UNI	т			
Embodied energy	- CT2- RCC + 40r	nm mine	ral wool insulatio	on + 12mm gyp	board			
Туре	Quantity	Unit	Density kg/m3 (IS 875 (Part 1) : 1987. 2008)	Weight (kg)	Embodied energy (MJ)/kg	Embodied energy (MJ)/m3	Total embodied energy (MJ)	Embodied ener per m2 of carpo area
CONCRETE								
Cement	5.41	m3	1440.0	7784.1	3.99		31058.56	705.
Fine agg. / sand	5.41	m3	1840.0	9946.4	0.02		202.91	4.
Coarse agg.	10.81	m3	1600.0	17298.0	0.22		3805.56	86.
				E	mbodied ener	gy for concrete	35067.02	796.
WALLING								
Cement	0.46	m3	1440.0	661.9	3.99		2641.10	60.
Fine agg. / sand	2.34	m3	1840.0	4303.4	0.02		87.79	2.
Mineral wool	2.68	m3	73.5	197.2	16.60		3273.77	74.
Gyp board	67.08	m2	10.8	721.1	3.30		2379.66	54.
AAC	6.62	m3	642.0	4250.7		1500.00	9931.50	225.
					Embodied end	ergy for walling	18313.82	416.
STEEL								
Steel in RCC	2632.9125	kg		2632.9125	34.24		90150.92	2048.
						TOTAL	143531.77	3262.0

				EDGE UNI	т			
Embodied energy	- CT3- ALC wall p	anel						
Туре	Quantity	Unit	Density kg/m3 (IS 875 (Part 1) : 1987. 2008)	Weight (kg)	Embodied energy (MJ)/kg	Embodied energy (MJ)/m3	Total embodied energy (MJ)	Embodied energ per m2 of carpe area
CONCRETE	_	_		_				
Cement	4.32	m3	1440.0	6213.6	3.99		24792.26	563.4
Fine agg. / sand	4.32	m3	1840.0	7939.6	0.02		161.97	3.0
Coarse agg.	8.63	m3	1600.0	13808.0	0.22		3037.76	69.0
					mbodied ener	gy for concrete	27991.99	636.1
WALLING			_					
Cement	0.46	m3	1440.0	661.9	3.99		2641.10	60.0
Fine agg. / sand	2.34	m3	1840.0	4303.4	0.02		87.79	2.0
ALC panel	5.60	m3	642.0			1500.00	8392.50	190.
AAC	6.62	m3	642.0	4250.7		1500.00	9931.50	225.
					Embodied ene	ergy for walling	21052.89	478.4
STEEL								
Steel in RCC	1960	kg		1960	34.24		67110.40	1525.2

		Climate Sm	nart Building Designs for Affordable Housing
Project Background	Multi Family - Tower Connected	М-4С- 2ВНК	Thermal Comfort Performance
DESIG	N DATA	К	EY PERFORMANCE INDICATORS DATA

PERFORMANCE DATA

- DAYLIGHT REPORT
- PDF File with UDI graphs and Master Sheet Excel
- SENSIBLE HEAT GAIN HISTOGRAM External façade shading location and layout (PDF)
- DEGREE DISCOMFORT HOURS DATA PDF File with DDH graphs
- EMBODIED ENERGY INTENSITY DATA

Excel file with EEI values for concrete, walling and steel for all performance levels

ENS COMPLAINCE •

Excel file with ENS compliance data (RETV, WWR and U-Value) for all climates

		MS	511-1C-2DNK					
		Wa	Iling materials	Density (kg/m3)	Thermal conductivity (W/mK)	C (J/kg.K)	Thickness (mm)	U-value (W/m2.K)
		(Ho	ot & Dry)					
		RC	C+Insulation (Min Wool)					0.59
		Reir	nforced concrete cement (RCC)	2288	1.58	880	150	_
		Min	era I wool (unbonded)	/3.5	0.03	920	40	_
		GVD	Sulli plaster Board	1 1120	0.10		150	0.0
		ENS COMPLAIN	NCE SHEET			-	200x 100x75	0.9
							2002 100275	0.77
6								0.59
	TANAT						150	0.00
Ś		(plemented by		-	40	-
Ministry of House	शत्यभेव जयते			Deutsche Gesellenbe	0	-	40	-
Ministry of Housi	ng and Urban Affa	lirs	german 🧹 🚺	für Internationale	() GmbH	-	150	0.0
Governn	nent of India						200x 100x75	0.3
							200x 100x75	0.77
ISTT-IC-ZDRK- Compo	sife climate							0.59
NS Compliance							150	
penable area to Floor Ratio	o (WFR)						40	1
	Minimum WFRop	Openable Area	Floor Area	WFR (W	/hole Block)		12	-
penable area to Floor							150	0.9
atio (WFR)	12.50%	62.64 sqm	355.2 sqm	2	20.81%		200x 100x75	0.77
			I					
								0.59
\inimum VLT requirement							150	
	WWR	Minimum VLT as per ENS	VLT for all variants				40	
							12	
(Whole block)	0.084	0.27	0.85				150	0.9
	1						200x 100x75	0.77
nermal Transmittance of Ro	of							
	U- Value in W/m2 K Required	U- Value in W/m2 K for CT1 Roof	U- Value in W/m2 K for CT2 Roof	U- Value C	in W/m2 K for T3 Roof	loor /s	Roofing system	

		MS	511-1C-2DNK					
		Wa	lling materials	Density (kg/m3)	Thermal conductivity (W/mK)	C (J/kg.K)	Thickness (mm)	U-value (W/m2.K)
		(Ho	ot & Dry)					
		RC	C+Insulation (Min Wool)					0.59
		Rei	nforced concrete cement (RCC)	2288	1.58	880	150	4
		Min	era i wool (unbonded)	/3.5	0.03	920	40	4
				1 1120	1 0.10		150	0.9
							200x 100x75	0.77
é								0.59
	MARKAL						150	
S		40	1					
Ministry of Housi		12	1					
Generation Generation Generation							150	0.9
Governi			DEUTSCHE ZUSAMMENARBEIT				200x 100x75	0.77
AS11-TC-2bhk- Compo	site climate							
NS Compliance			0.59					
No compliance							150	4
penable area to Floor Ratio (WFR)							40	4
	Minimum WFRop	Openable Area	Floor Area	WFR (V	nole Block)		12	
penable area to Floor atio (WFR)	12.50%	62.64 sqm	355.2 sqm	2	0.81%		200x 100x75	0.9
								0.50
							150	0.59
linimum VLI requirement						-	40	
	WWR	Minimum VLT as per ENS	VLT for all variants				40	-
Minimum VLT requirement	0.084	0.27	0.85				150	0.9
							200x 100x75	0.77
nermal Transmittance of Ro	of							
	U- Value in W/m2 K Required	U- Value in W/m2 K for CT1 Roof	U- Value in W/m2 K for CT2 Roof	U- Value C	in W/m2 K for T3 Roof	loor /s	Roofing system	
nermal Transmittance of oof	1.2	0.62	0.62		0.56	gu	colored tile Foam concrete + Light	-
			· · · · · · · · · · · · · · · · · · ·			gu	colored tile	4
ETV (Whole Block)						JU	Light colored tile	
								_

ETV (Whole Block)			
Construction technology	Orientation	Min RETV as per ENS (W/m2 K)	RETV Whole block (W/m2 K)
CTI	Best (180 deg)	15.00	8.03
	Worst (270 deg)	15.00	9.47
CT2	Best (180 deg)	15.00	7.20
	Worst (270 deg)	15.00	8.54
CT3	Best (180 deg)	15.00	10.64
	W/2 === + (070 - 1)	15.00	10.40

DOWNLOAD

ENS COMPLAINCE SHEET – MATERIAL SHEET

Ministry of Housing and Urban Affairs Government of India

End of Session

Questions and Feedback

Please follow the link in the chat box to fill the feedback survey:

51 | **CLIMATE SMART BUILDINGS :** *Replicable Design options for Thermally Comfortable Affordable Housing*

Watchout for announcement on webtool training sessions!