

Light House Projects : LIVE LABORATORIES

WEBINAR SERIES: Volume 3 – International Perspective

e-Learning sessions on innovative techniques in new age construction Aug – Sep 2023

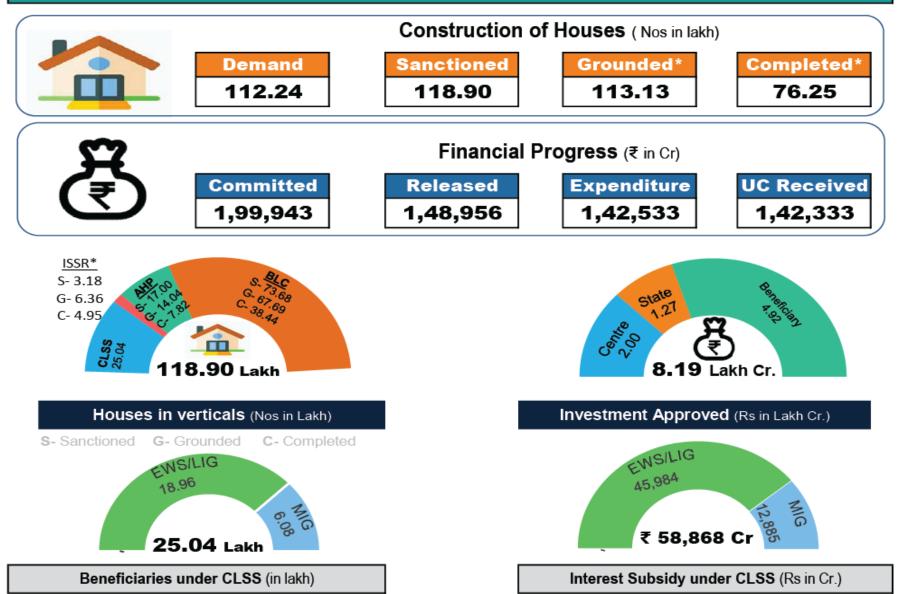
Volume 3 -Session #02 on Light House Project Chennai, Tamilnadu

Theme – International Perspective Innovative Technologies and Practices in LHPs Date: 28.08.2023, Monday| Time: 15:00 – 17:00

Light House Projects : Live Laboratories Webinar Series

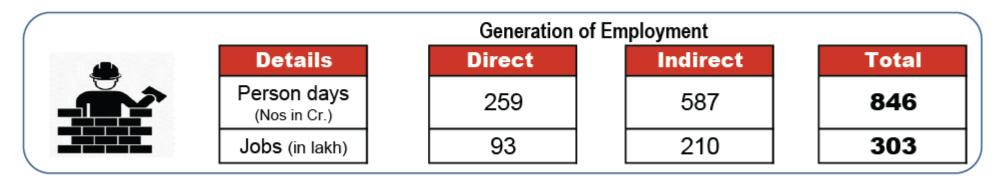
Emerging Construction Systems for Mass Housing

Building Materials & Technology Promotion Council Ministry of Housing & Urban Affairs Government of India

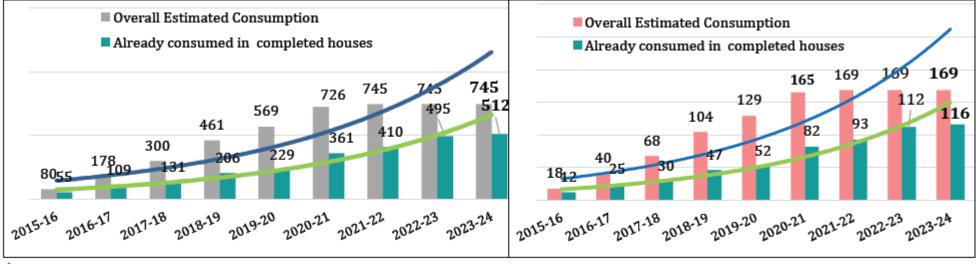


PMAY (U) Achievement (provisional)

[as on 14th August, 2023]



Overall Sanctions for 1.19 crore Houses


16 lakh houses are being constructed using New Technologies

Cement Consumption (Lakh MT)

Steel Consumption (Lakh MT)

एक कटम स्वयत्यां की

* includes incomplete works of earlier NURM.

सबका सपना, घर हो अपना

Global Housing Technology Challenge - India (GHTC-I)

(- -) C (a https://ghte-india.gov.in

https://ghtc-india.gov.in/

Global Housing Technology Challenge - India (GHTC-I)

Categories	Technology	Tech. Providers
1	Precast Concrete Construction System - 3D Precast volumetric	4
2	Precast Concrete Construction System – Precast components assembled at site	8
3	Light Gauge Steel Structural System & Pre-engineered Steel Structural System	16
4	Prefabricated Sandwich Panel System	9
5	Monolithic Concrete Construction	9
6	Stay In Place Formwork System	8
	Total	54



Light House Projects

Hon'ble Prime Minister laid the foundation stone of six LHPs on 01.01.2021

Conventional Construction Systems

business as usual approach

The prevalent construction systems in India are: Load bearing Structure

In this system, walls are constructed using bricks/stone/block masonry and floor/roof slabs are of RCC/stone/composite or truss. It is cast insitu system and called load bearing system as load of structure is transferred to foundation and then to ground through walls.

RCC Framed Structure

In this cast in-situ system, the skeleton of a structure is of RCC column and beam with RCC slab. The infill walls can be of bricks/blocks/stone /panels. The load of the structure is transferred through beam and column to the foundation.

Conventional Construction Systems Alternate Construction Systems Slow Fast Maximum Use of Natural Resources **Optimum use of Resources** Minimum Waste Waste Generation **Air/Land/Water Pollution Minimum Pollution** Labour Intensive **Industrialized System Prescriptive Design Cost-effective Design Better health & Productivity Unhealthy Indoor Quality Regular Maintenance** Low Life Cycle Cost **Energy Intensive Energy Efficient** Cast-in-situ Poor Quality **Factory Made Quality Products High GHG Emissions** Low GHG Emissions Unsustainable **Sustainable**

3D Precast Volumetric Construction

- Replacing cast in situ RCC structural frame with factory made structural components – 3D
- Customized factory made volumetric construction
 i.e. the entire module (room)

3D MONOLITHIC VOLUMETRIC Construction

Global Housing Technology Challenge - India (GHTC-I)

Precast Concrete Construction System – 3D Volumetric

- 1 Pre-cast concrete system with columns, beams, Katerra walls, slabs, hollow core slabs & also 3D Volumetric components
- 2 Vertical structural modules cast in Plant/Casting Moducast Pvt. Ltd yard are assembled together through casting of floor panel. The unit is transported & installed at site.
- 3 3D Modular casting using steel mould and high Magicrete performance concrete of building modules in Building Solutions, factory. These pods are transported to the construction site & assembled
- 4 Modules with 3D Volumetric Precast concrete Ultratech Cement unit, various units make on house Ltd,

Light House Project (LHP) at Ranchi, Jharkhand

(Technology: Precast Concrete Construction – 3D Volumetric Construction)

Light House Project: Ranchi, Jharkhand

Construction Agency	M/s SGC Magicrete LLP
Technology Used	Precast Concrete Construction System – 3D Volumetric
No. of Houses	1,008
No. of Towers	07 (G+8)
Technology brief	 A latest technology where precast concrete structural modules like room, toilet, kitchen, bathroom, stairs etc. & any combination of these are cast monolithically in casting yard under controlled condition. These Modules are transported and installed using cranes & push-pull jacks and integrated together at site to form a complete building unit.

Construction Process

Casting of structural modules & slabs in the casting yard

Placement of pre cast floors on already erected structured modules

2

Placement of modules at site using cranes

Step 2 & 3 are repeated like Lego Blocks to complete a Tower

2D Precast Concrete Construction

- Replacing cast in situ RCC structural frame with factory made structural components – 2D planar elements
- Customized Factory made beams, columns, wall panels, slab/floors, staircases etc.

Concrete components prefabricated in precast yard or site and installed in the building during construction

Global Housing Technology Challenge - India (GHTC-I)

Precast Concrete Construction System – Precast components assembled at site

1	Precast Large Concrete Panel (PLCP) System with structural members (wall, slab etc.) cast in a factory/ casting yard and brought to the building site for erection & assembling	Larsen & Toubro
2	Pre-cast Concrete Structural system comprising of pre-cast column, beam, precast concrete / light weight slab, AAC blocks/ infill concrete walls.	
3	Optimal Pre-cast concrete System through structural Analysis, design & equipment support	Elematic India,
4	Precast concrete construction system using precast walls with precast plank floor	PG Setty Construction Technology Pvt Ltd,
5	Precast components comprising of beams, coloumns, staircase, slab, hollow core slab etc. manufactured in plant & erected on site	Teemage
6	Pre-cast sandwich panel system & Light weight Pre cast Light Weight concrete slab	Nordicflex
7	Prefabricated Interlocking Technology (without mortar) with Roofing as Mechnized Precast R.C. Plank & Joist system	Adalakha Associates Pvt. Ltd
8	Large Hollow wall prefab concrete Panel (lightweight, interlocking, concrete panel) using factory produced large standard hollow interlocking concrete block	William Ling,

Light House Project (LHP) at Chennai, Tamil Nadu

(Technology: Precast Concrete Construction System-Precast Components)

Light House Project: Chennai, Tamil Nadu

Construction Agency	M/s B.G. Shirke Constriction Private Ltd.
Technology Used	Precast Concrete Construction System - Precast Components Assembled at Site
No. of Houses	1,152
No. of Towers	12 (G+5)
Technology Brief	 Individual precast building components (columns & beams, slabs, stairs etc.) are manufactured in the casting yard under controlled conditions. Finished components are then transported to site, erected & assembled through in-situ concreting (wet jointing).

Manufacturing of Pre-cast building components (columns & beams, slabs, stairs etc.) in casting yard

3 **Placement** of pre-cast slabs & **Assembly** through in-situ concreting (wet jointing) with beam and columns

Construction Process

Transportation & Erection of Pre- cast beams & columns at site

4 **Infill walls** constructed using Autoclaved Aerated Concrete (AAC) Block masonry along with **services** (electricity, plumbing) followed by plastering

PRE-ENGINEERED STEEL STRUCTURAL SYSTEM

Replacing cast 0 in situ RCC structural frame with factory made steel (hot rolled) structural system

Steel skeleton with Aerocon panel infills

LIGHT GAUGE STEEL STRUCTURAL SYSTEMS

Replacing cast in situ RCC structural frame with factory made light gauge steel (cold rolled) structural system

3

Global Housing Technology Challenge - India (GHTC-I)

Light Gauge Steel Structural System & Preengineered Steel Structural System

1	LGS Framing with various walling & roofing options	Mitsumi Housing Pvt. Ltd,
2	LGS Framing with various walling & roofing options	Everest Industries Ltd,
3	LGS Framing with various walling & roofing options	JSW Steel Ltd.,
4	LGS Framing with various walling & roofing options	Society for Development
		of Composites
5	LGS Framing with various walling & roofing options	Elemente Designer Homes
6	LGS Framing with various walling & roofing options	MGI Infra Pvt. Ltd.,
7	LGS Framing with various walling & roofing options	RCM Prefab Pvt. Ltd,
8	LGS Framing with various walling & roofing options	Nipani Infra and
		Industries Pvt. Ltd.,
9	LGS Framing with various walling & roofing options	Strawcture Eco
10	LGS Framing with various walling & roofing actions	Visakha Industries Ltd.
11	Prefabricated steel structural system with Dry wall	RCC Infra Ventures Ltd.
	system as AAC panels, PUF panels etc	
12	Hot rolled steel frame with speed floor	Jindal Steel & Power Ltd.
13	Hot rolled steel section with AAC Panels as floor &	HIL Ltd.
	slab	
14	AAC wall and roof panel system to provide integrated	Biltech Building Elements
	solution. AAC products are reinforced and used in	Ltd
	both load and non-load bearing applications	
15	AAC Panels are Wire mesh/ steel reinforced for use as	SCG International India
	wall & slab. Appears to be non load bearing panels to	Pvt Ltd
	be used with structural framing.	
16	Precast Light Weight Hollow-core wall Panel is a non-	Pioneer Precast Solutions
	structural construction material with framed	Private Limited
	structures.	

Light House Project (LHP) at Agartala, Tripura

(Technology: Light Gauge Steel Structural System & Pre-Engineered Steel Structural System)

Light House Project: Agartala, Tripura

1

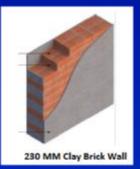
Construction Agency Technology Used	M/s Mitsumi Housing Pvt. Ltd Light Gauge Steel Framed (LGSF) System with Pre- engineered Steel Structural System	
No. of Houses	1,000	
No. of Towers	07 (G+6)	
Technology brief	 This system uses factory made galvanized Light Gauge Steel wall components in combination with preengineered steel structural system for structure The light gauge steel wall sections are assembled at site which are then cladded with concrete panels on both sides and filled with light weight concrete. 	

Customised steel columns & beams manufactured in the factory are erected at site

Filling of light weight concrete between the wall panels

Construction Process

- 2
 - **Erection** of factory made **LGSF panels** and **Fixing** of Precast concrete panels for walling



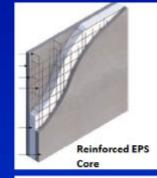
4

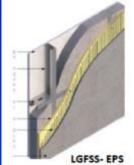
Deck slab installation in already erected steel structure & **Concreting with services**

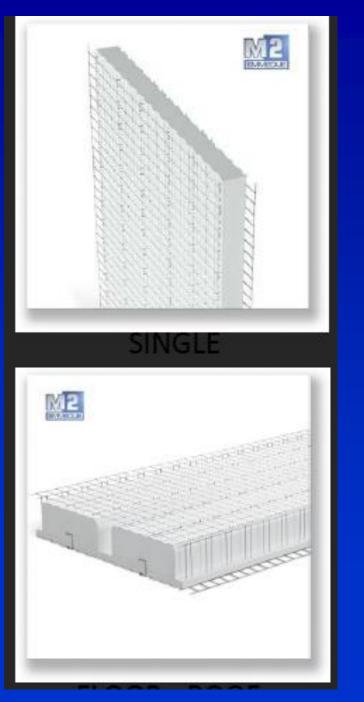
PREFABRICATED SANDWICH PANEL SYSTEMS

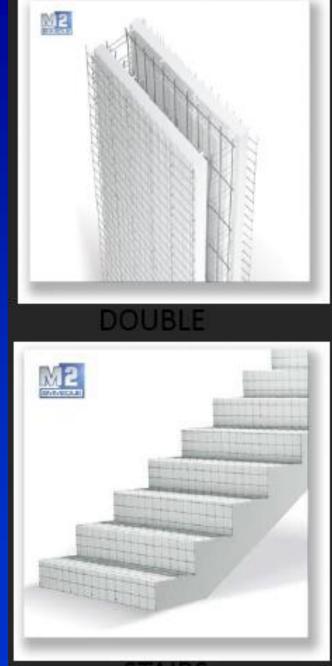


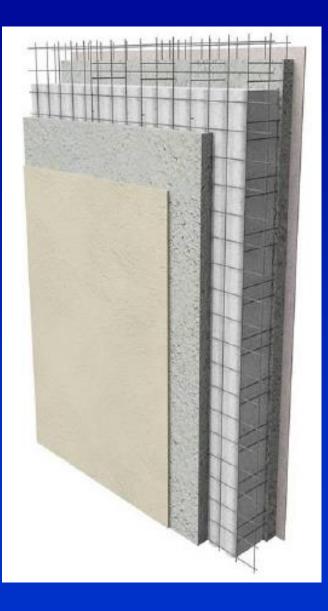
EPS Core Panel Systems


Other Sandwich Panel Systems


- Fibre cement board
- MgO Board
- AAC panels






Replacing brick and mortar walls with dry customized walls made in factory

Global Housing Technology Challenge - India (GHTC-I)

Prefabricated Sandwich Panel System

1	Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slab	Worldhaus
2	EPS Cement sandwich Panel: wall & slab with EPS	Bhargav
	Cement sandwich Panel to be used with RCC or	Infrastructure
	Steel structural frame. Load bearing upto G+1	Pvt.Ltd
	storey	
3	EPS Cement sandwich Panel: wall & slab with EPS	Rising Japan Infra
	Cement sandwich Panel to be used with RCC or	Private Limited
	Steel structural frame. Load bearing upto G+1	
	storey	
4	Reinforced Expanded Polystyrene sheet core	Bau Panel Systems
	Panel with sprayed concrete as wall & slab	India Pvt Ltd,
5	Reinforced Expanded Polystyrene sheet core	BK Chemtech
	Panel with sprayed concrete as wall & slab	Engineering
6	Reinforced Expanded Polystyrene sheet core	MSN Construction
	Panel with sprayed concrete as wall & slab	
7	Reinforced Expanded Polystyrene sheet core	Beardshell Ltd.
	Panel with sprayed concrete as wall & slab	
8	Pre-fab PIR (Poly-isocyanurate) based Dry Wall	Covestro India Pvt.
	Panel System" as non-load bearing wall	Ltd.,
9	Sandwich panels as wall & slab	Project Etopia
		Group

Light House Project (LHP) at Indore, M.P.

(Technology: Prefabricated Sandwich Panel System & Pre-Engineered Steel Structural System)

Light House Project: Indore, Madhya Pradesh

Construction Agency	M/s KPR Construction Pvt. Ltd	1
Technology Used	Prefabricated Sandwich Panel System with Pre-Engineered Steel Structural System	. ck
No. of Houses	1,024	1.11.
No of Towers	08 (S+8)	
Technology brief	 The factory-made Prefabricated Sandwich Panel System comprises of core cement mortar with EPS granules balls sandwiched between calcium silicate boards on both sides. These panels are being used in combination with pre-engineered steel structural system as a dry wall construction in this project. 	3

Construction Process

Customised steel columns & beams manufactured in the factory are erected at site

Concreting of deck slabs with reinforcement along with **services**

2 Deck slab installation in already erected steel structure

Factory made Prefabricated sandwich panels are installed as infilled walls along with services

Rising EPS (Beads) Cement Panels

- Rising EPS (Beads) Cement Panels are patented panels from M/s Rising Japan Infra Pvt. Ltd. These are lightweight composite wall, floor and roof sandwich panels made of thin fiber cement/calcium silicate board as outer and inner faces with a core of EPS granule balls, adhesive, cement, sand, fly ash and other bonding materials in mortar form.
- The core material in slurry state is pushed under pressure into preset molds. Once set, it shall be moved for curing and ready for use with RCC or steel framed structure.
- These panels are presently manufactured by the firm in China and now plants are operational in Pune & Nagpur.

MONOLITHIC CONCRETE CONSTRUCTION

- Replacing cast-in-situ Formwork with factory made customized formwork systems
- Formwork material is Aluminium / composites / steel having 100 to 500 repetitions
- Assembly line construction i.e. placing the formwork, pouring the concrete, moving the formwork to upper level

Global Housing Technology Challenge - India (GHTC-I)

Monolithic Concrete Construction

1	Aluminium formwork system for Monolithic	Maini Scaffold Systems
	Concrete construction	
2	Aluminium formwork system for	KumkangKind India
	Monolithic Concrete construction	Pvt. Ltd
3	Aluminium formwork system for	S-form India Pvt. Ltd.,
	Monolithic Concrete construction	- · · · · · · · · · · · · · · · · · · ·
		ATC Information at the
4	Aluminium formwork system for Monolithic	AIS Infrastructure Ltd.
	Concrete construction	
5	Aluminium formwork system for Monolithic	Innovative housing &
	Concrete construction	Infrastructure Pvt. Ltd
6	Aluminium formwork system for Monolithic	MFS formwork
	Concrete construction	Systems Pvt. Ltd.
7	Aluminium formwork system for	Knest Manufacturers
	Monolithic Concrete construction	LLP
8	'Tunnel form' construction technology, an cast	Outinord Formworks
Ŭ		
	in situ RCC system, based on the use of high-	Pvt. Ltd.
	precision, re- usable, room-sized, steel forms or	
	moulds for monolithic concrete construction	
9	Aluminium formwork system for Monolithic	Brilliant Etoile
	Concrete construction	

Light House Project (LHP) at Rajkot, Gujarat

(Technology: Monolithic Concrete Construction System)

Light House Project: Rajkot, Gujarat

Construction Agency	M/s Malani Construction Co.	
Technology Used	Monolithic Concrete Construction using Tunnel Formwork	
No. of Houses	1,144	1
No. of Towers	11 (S+13)	
Technology brief	 Reinforced Concrete walls and slabs are cast monolithically in single pour (one go) using Tunnel Form work. It is a customized engineered steel formwork consisting of two half shells which are placed together and then concreting is done to form a room size module. Several such modules make a house. 	

Construction Process

Customised Tunnel Formwork (mould) of steel manufactured in the factory

Placement of slab reinforcement & Concreting of walls & slabs together in one go along with services (electricity,

2 **Placement of Tunnel formwork** in already erected reinforcement cage for walls at site

Infill walls constructed using Autoclaved Aerated Concrete (AAC) Block followed by plastering

Modular Tunnel form

- Tunnel formwork is a mechanized system for cellular structures. It is based on two half shells which are placed together to form a room or cell. Several cells make an apartment. With tunnel forms, walls and slab are cast in a single day.
- The formwork is set up for the day's pour in the morning. The reinforcement and services are positioned and concrete is poured in the afternoon.
 Once reinforcement is placed, concrete for walls and Slabs shall be poured in one single operation. The formwork is stripped the early morning and positioned for the subsequent phase.
- Here the walls and slabs are cast in a form of a tunnel leaving two sides open whereas in monolithic concrete construction the entire room is cast in a single pour..

STAY-IN-PLACE FORMWORK SYSTEM

- Replacing cast-in-situ Formwork with factory made formwork systems
- It is sacrificial formwork or lost formwork means formwork is left in the structural system to later act as insulation or reinforcement cage

6

Global Housing Technology Challenge - India (GHTC-I)

Stay In Place Formwork System

1	Expanded-Steel Panel reinforced with all- galvanised Steel Wire-Struts serving both as the load- bearing steel structure and as the stay-in-place steel formwork filled with EPS- alleviated concrete	
2	Factory made prefab Glass fibre reinforced Gypsum cage panels suitable for wall & slab with reinforcement & concrete as infill as per the requirement	-
3	Structural Stay In Place Galvanized Steel formwork system for walling with the same bottom single layer formwork for slabs/ in-situ slab	
4	Factory produced PVC Stay in place formwork with concrete & reinforcement in walling units with cast insitu RCC Slab	Joseph Jebastin (Nove Assembler)
5	Fully load bearing walls with 150 mm monolithic concrete core sandwiched inside two layers of EPS as walling The forms are open ended hollow polystyrene interlocking blocks which fits together to form shuttering system	
6	Ready to use Stay in place polymer formwork, light weight, with flooring slab (combination of ferro cement and natural stone) placed on RCC precast joists)	· · · · · · · · · · · · · · · · · · ·
7	Fast Bloc, Insulated Concrete Form (ICF), acts as formwork for concrete and rebar, Co1oumn/post and beam construction, creating an strong skeleton in the walls.	-
8	Formwork system "Plaswall with Two fibre cement boards (FCB) & HIMI (High Impact Molded Inserts) bonded between two sheets of FCB in situ and erected to produce a straight-to finish wall with in-situ concrete	Pvt.Ltd

Light House Project (LHP) at Lucknow, U.P.

(Technology: Stay in-place Formwork System & Pre-Engineered Steel Structural System)

Light House Project: Lucknow, Uttar Pradesh

Construction Agency	M/s Jam Sustainable LLP	
Technology Used	Stay in Place PVC Formwork with Pre-Engineered Steel Structural System	
No. of Houses	1,040	
No. of Towers	s 04 (S+13)	
Technology brief	 Poly-vinyl Chloride (PVC) based permanent stay-in- place form work acting as pre finished walls filled with concrete which requires no plaster and paint These pre finished walls are used in combination with Pre-Engineered Steel Structural System 	

Customised steel columns & beams manufactured in the factory are erected at site

3 Factory made prefinished PVC Wall forms are installed as infilled walls along with services

Construction Process

2 **Deck slab installation** in already erected steel structure & **Concreting with services**

Filling of infill walls with concrete

Stay-In-Place PVC Wall Forms

- The extruded components slide and interlock together to create continuous formwork with the two faces of the wall connected together by continuous web members forming hollow rectangular components. The web members are punched with oval-shaped cores to allow easy flow of the poured concrete between the components.
- The hollow Novel Wall components are erected and filled with concrete, in situ, to provide a monolithic concrete wall.

This is a prefinished wall formwork from M/s Novel Assembler Pvt. Ltd. comprising of rigid Poly-Vinyl Chloride (PVC) based polymer components that serve as a permanent stay-in-place durable finished form-work for concrete walls.

Conventional Construction Systems Alternate Construction Systems Slow Fast Maximum Use of Natural Resources **Optimum use of Resources** Minimum Waste Waste Generation **Air/Land/Water Pollution Minimum Pollution** Labour Intensive **Industrialized System Prescriptive Design Cost-effective Design Better health & Productivity Unhealthy Indoor Quality Regular Maintenance** Low Life Cycle Cost **Energy Intensive Energy Efficient** Cast-in-situ Poor Quality **Factory Made Quality Products High GHG Emissions** Low GHG Emissions Unsustainable **Sustainable**

Emerging construction systems help to build

SAFER structures

Sustainable Buildings

- 40% reduction in water use
- ✤ 35% reduction in GHG emission

✤ 75% reduction in waste

Resilient - disaster-resistant, structurally superior

Adoption of New Technologies by States

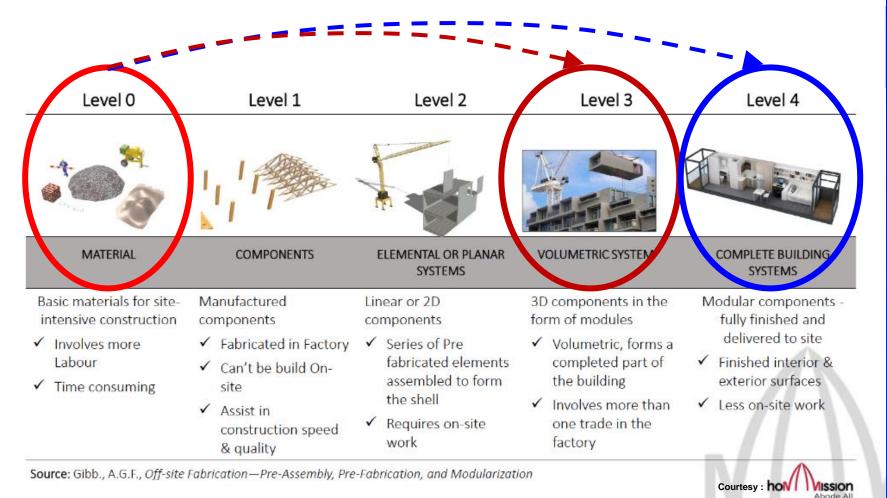
AHP houses in Pune, Maharashtra using Precast Construction Technology

 Around 16 Lakh houses are being built using innovative technologies under PMAY(U) & other state schemes.

State	Technology	
Andhra Pradesh	EPS, Monolithic and Steel Technology	
Chhattisgarh	Monolithic and Precast Technology	
Gujarat	Monolithic, Precast (Waffle-crete)	
Kerala	Glass Fibre Reinforced Gypsum (GFRG)	
Maharashtra	Precast (3S) & Monolithic Technology	
Odisha	Precast concrete construction	
Jharkhand	Global Tender floated	
Tamil Nadu	Precast Concrete Technology	
States like Assam, Karnataka, Madhya Pradesh, Telangana & Uttarakhand have also expressed interest in Technology neutral bidding process		

54 Alternate technologies Identified

technologies approved by CPWD



SoRs issued for alternate technologies by CPWD (27+7)

1 H

Looking Back / Rear view

Levels of Construction Technology

You can reach us at ska@bmtpc.org; info@bmtpc.org; info@bmtpc.org;

"Creating Enabling Environment for Affordable Housing for All"

Ministry of Housing and Urban Affairs Government of India

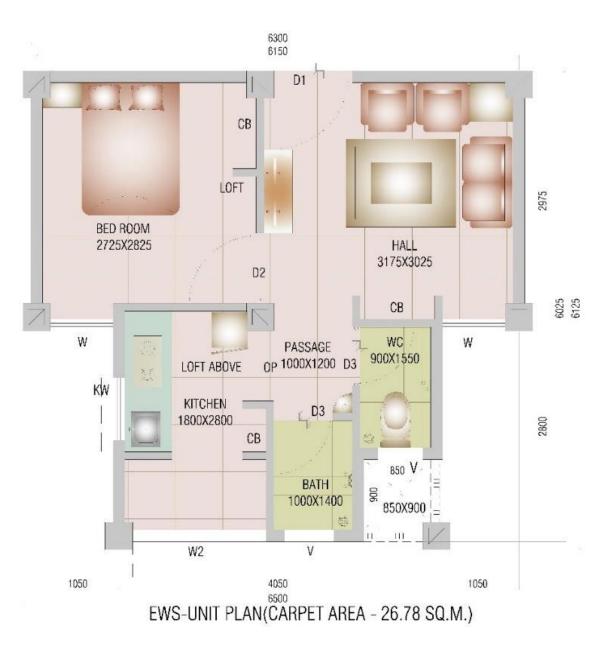
Volume 3 - Session #02 on Light House Project Chennai, Tamil Nadu Theme – International Perspective Innovative Technologies and Practices in LHPs Date : 28.08.2023 ,Monday | Time : 15:00 – 17:00 LIGHT HOUSE PROJECT AT CHENNAI

GHTC-India Category:

Precast Concrete Construction System – Precast components assembled at site

Technology: Industrialized 3-S system using RCC Precast Columns, Beams, Semi-Precast Solid Slab with AAC Block masonry

- Project brief:
 - 1152 houses constructed in G+5 configuration.
 - The total plot area is around 30,000 Sqm and carpet area of each house is approximately 27 Sqm.
 - There are 12 residential blocks.
 - The project also includes social infrastructure such as Aganwadi, Shops, Milk Booth, Library and Ration Shop.


Typical floor plan

At each floor there are 16 dwelling units

Typical Dwelling Unit Plan

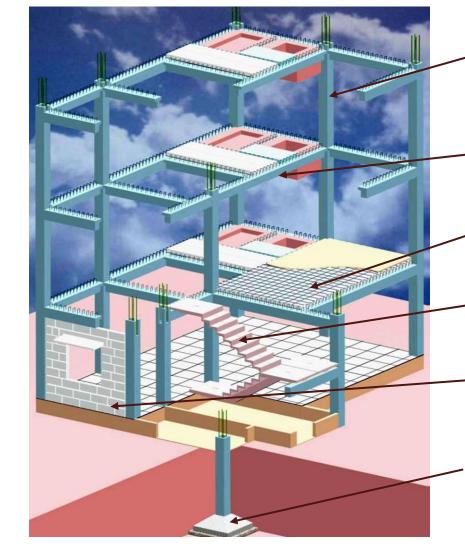
- Each dwelling unit comprises of one hall, one Bedroom, Kitchen, WC and Bath.
- The carpet area of each unit is 26.78 sq.mt. The sizes of individual rooms & service areas conform to NBC norms.

• Other special features:

- Green rating as per GRIHA
- Use of renewable resources:
 - Rain water harvesting
 - Solar lighting
- Solid waste management
- STP with recycling of waste water
- Fire fighting services as per NBC norms

Prevalent Construction Systems

Technology being Used


Load bearing Structure

RCC Framed Structure

Precast Concrete Construction System-Precast Components Assembled at Site

 Precast RCC Hollow Columns
 – core filled in-situ with selfcompacting concrete.

Partially Precast RCC Beam – top part being cast with column and slab for monolithicity

Partially Precast slab with reinforced concrete screed

- Precast staircase

Autoclaved Aerated Blocks (AAC) masonry for walls. This can also be replaced with precast RCC shear wall

Conventional RCC footing with precast stem column upto plinth level

Technology Details

Structural Elements

Foundation

- As per geo-technical investigations, bearing capacity, soil strata, water table, etc.
- Typical isolated footing along with some combined footings of varying sizes depending on the load.
- Precast RCC Stem columns upto plinth level and connected with precast plinth beam.
- The stem columns have notches in which precast beams are placed.

Structural System

- Industrialized 3-S (Strength, Safety, Speed) prefab method of construction is based on mass produced precast structural components (columns, beams, shear walls, slabs, stairs etc.) onsite or offsite.
- The methodology of construction includes assembly of precast RCC hollow columns, beams and partially precast RCC solid slabs at site. The slabs have in-situ reinforced concrete laid on top after erection thereby making them monolithic.

Floor/ Roof Slab

 The partially precast slab, precast beam and column are assembled together and wet jointed through screed of reinforced concrete laid on top making it monolithic structure.

Autoclaved Aerated Concrete (AAC) Blocks for Wall

 Autoclaved Aerated Concrete (AAC) blocks are lightweight, precast manufactured using foam concrete and suitable as masonry unit. These are non-load bearing infill walls.

Limitations

- Capital intensive since establishment of precast factory is required.
- Minimum number of dwelling units required to achieve cost economy.
- Skilled manpower is required for production and erection of precast components.

Casting of Precast Elements

CASTING OF PRECAST ELEMENTS


• Let's take you to a tour of typical casting yard which is setup at site for production of beam columns and slabs including other components like staircase, sunshades and lintels etc.

CASTING OF PRECAST ELEMENTS

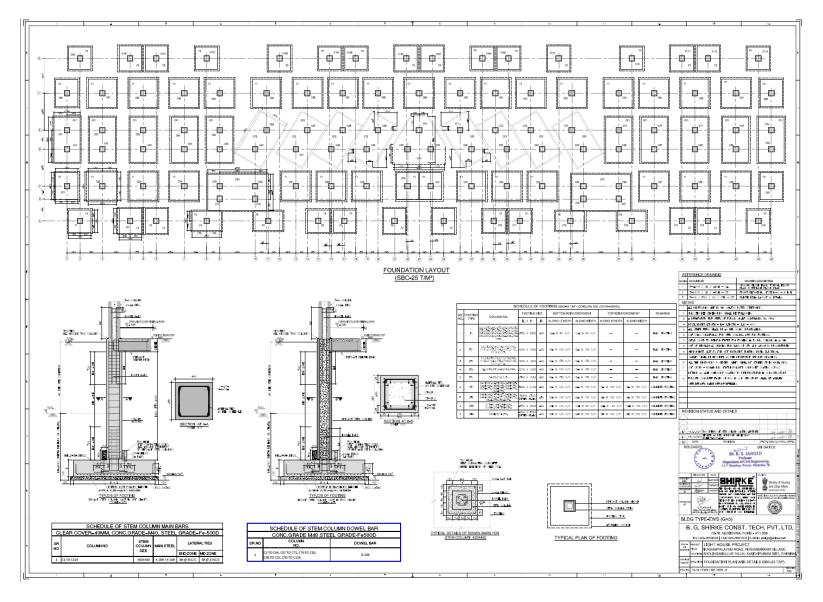
Casting of partially precast slabs

CASTING OF PRECAST ELEMENTS

Precast Beam

Precast slab

Precast Column


Precast Stairs

Construction Sequence

Foundation

- Sub-Structure:
- Super-structure: Structural System Floors/Slab AAC Block Masonry for walls **Plumbing & Electrical** MEP:
- Finishing

Structural Drawings

The typical project starts with layout and excavation.

 After the layout at site, the excavation of each block is done using mechanical excavators upto the required depth of foundation.

 In Chennai project, ground water was encountered during the excavation which was continuously drained during the foundation work.

• Before laying the foundation, the plain cement concrete is laid.

• The foundation work started with the PCC of 100 mm thickness.

Plate Load Test

- Safe bearing capacity of 25t/m² has been considered for design of isolated and combined footing based on the soil investigation done at site by the construction agency.
- The construction agency also conducted plate load test to verify the SBC at representative locations.
- The plate load test was conducted at a depth of 3.0 m from ground level.
- Plate used for test was 0.3mX0.3m having area of 0.09sqm.Capacity of the jack 200KN.
- Least count of settlement gauge was 0.01mm and hydraulic pressure gauge of 10 kg/sq.cm.
- Load increment was done for 24 hrs. Maximum load applied was 576KN. The gross settlement was 4.04mm which was well within the acceptable limit.

 After PCC, isolated and combined RCC footings of varying thickness depending upon structural design with M35 concrete are placed.

 After PCC, isolated and combined RCC footings of varying thickness depending upon structural design with M35 concrete are placed.

CASTING OF FOOTING

Stem Column

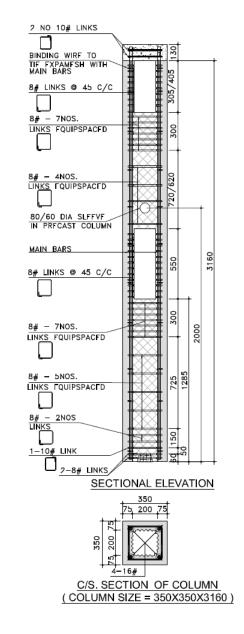
- Precast stem column are placed on the RCC footing.
- The size of the typical stem column is 450mmX450mm and its' height is upto the plinth beam. Main bars consist of 4No 20 dia and 4 no. 16 dia.
- The grade of concrete used is M40.
- Column core is formed by using EXPAMESH which acts as a sacrificial formwork to maintain the dimensional accuracy.
- Clear cover to reinforcement is kept at 40mm. OPC cement of grade 53 with C3A content (5% to 8%) has been used below ground level due to high chloride content in the soil as recommended in soil investigation report.
- Exposed surfaces of RCC in sub-structure have been applied with bitumen paint before refilling.

FOUNDATION

• Backfilling of foundation after completion of erection of stem column and plinth beam.

FOUNDATION

• After erection of these hollow core stem columns, precast plinth beam are integrated in the column notches.


Backfilling works in progress

The second

Precast Column in Superstructure

- Hollow core precast columns are used which are filled with the self compacting concrete after placement of precast beams for monolithic joint.
- Typical size of the Precast column in ground floor and upper floors is 350mm by 350mm having varying height depending upon the architectural requirement.
- Grade of concrete used is M40 and clear cover to reinforcement is 40mm. Demoulding of side shutter is done after 12 hrs of concreting and 18 hrs for bottom shuttering.

STRUCTURAL SYSTEM

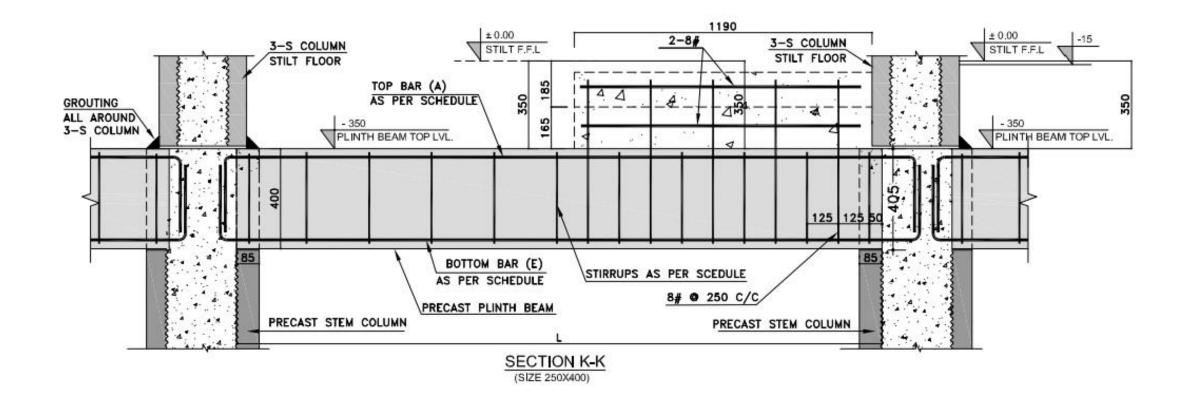
Erected Precast columns with notches and dowels over plinth beam

Placement of ground floor beam on columns.

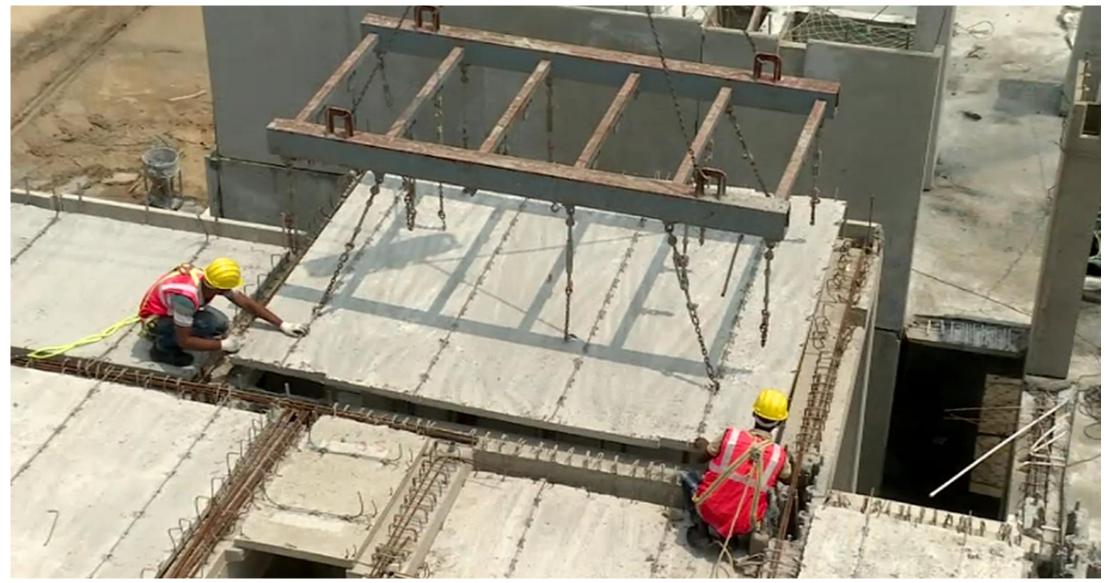
Wet jointing of stem column with plinth beam

Grouting of beam – column joint

Beam - column - slab wet jointing


 All the connections and jointing of various structural components are accomplished through insitu self-compacting concrete/micro concrete/non shrink grout as per structural design and codal provisions.

 A typical beam column joint showing monolithic action and continuity thus ensuring better seismic resistance


Before Jointing

After Jointing

Typical Joint between Beam & Column

FLOORS/ SLAB

 After erection of beams and column, partially precast slabs are placed with required bearing on the beams.

FLOORS/ SLAB

• Finally the screed concrete (55mm thickness) is poured over the partially precast slab to ensure monolithic continuous action and ductile behavior of the structure.

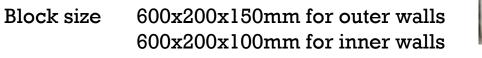
FLOORS/ SLAB

 Structural integrity and monolithic behavior is achieved in this technology through wet jointing using dowel bars/ continuity reinforcement placed at connection joints and filled with in-situ self-compacting concrete of higher strength in hollow cores of column.

202175/15 10:53

PARTIAL PRECAST SLAB WITH REINFORCEMENT

ITAN



AAC BLOCK MASONRY

Autoclaved Aerated Concrete (AAC) Blocks for Wall

 Autoclaved Aerated Concrete (AAC) is a lightweight, precast, foam concrete building material suitable for producing concrete masonry unit like blocks. Composed of sand, calcined gypsum, lime, cement, water and aluminum powder, AAC products are cured under heat and pressure in an autoclave.

 After construction of frame with precast beam column and slab, internal walls are constructed using Autoclaved aerated concrete (AAC) blocks having density 451-550 kg/m3 as per IS 2185 (Part-3).

Third Floor Beam, Column, Slab and Second Floor Block Masonry

Fifth Floor Masonry work in Progress

External Plastering work in Progress

ł

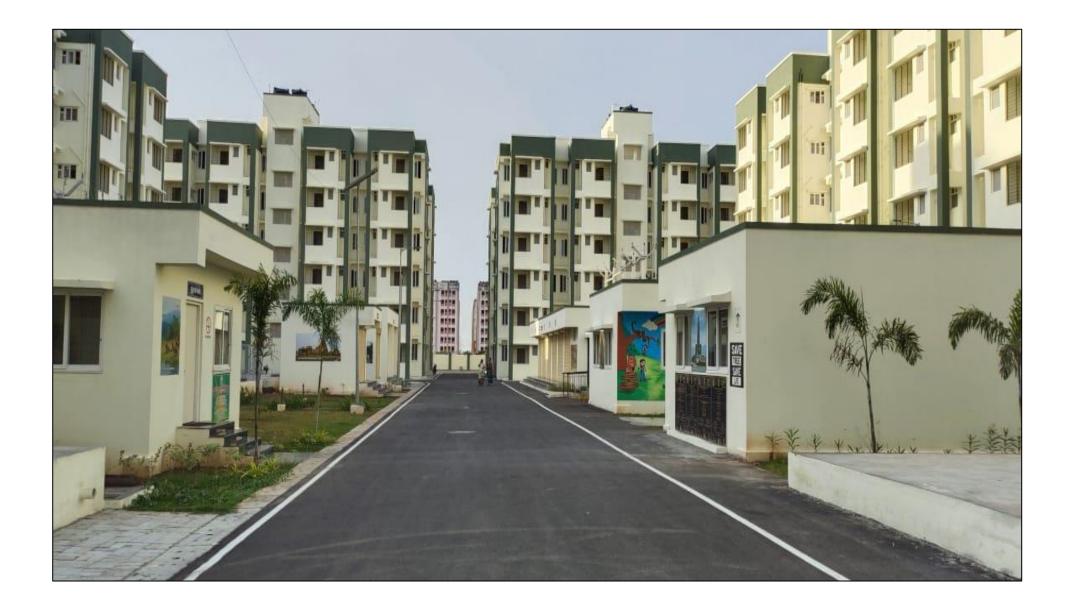
QUALITY CONTROL LAB AT SITE

 Quality control and quality assurance is essential for a project and therefore a quality control lab has been established at site for testing of raw materials and finished products.

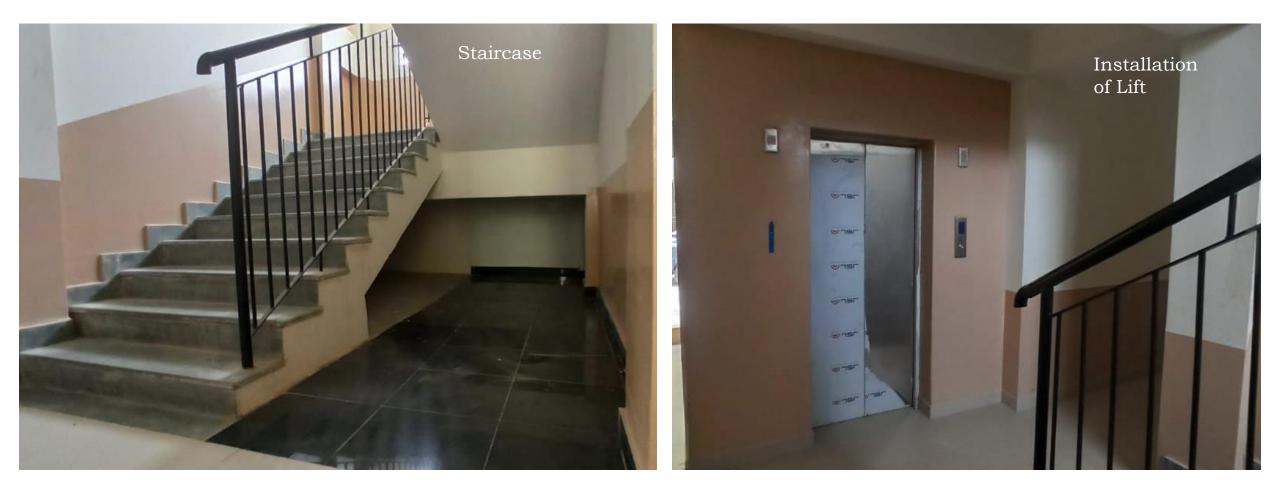
The plumbing and electrical services are incorporated as done in conventional method of construction i.e. chasing and filling

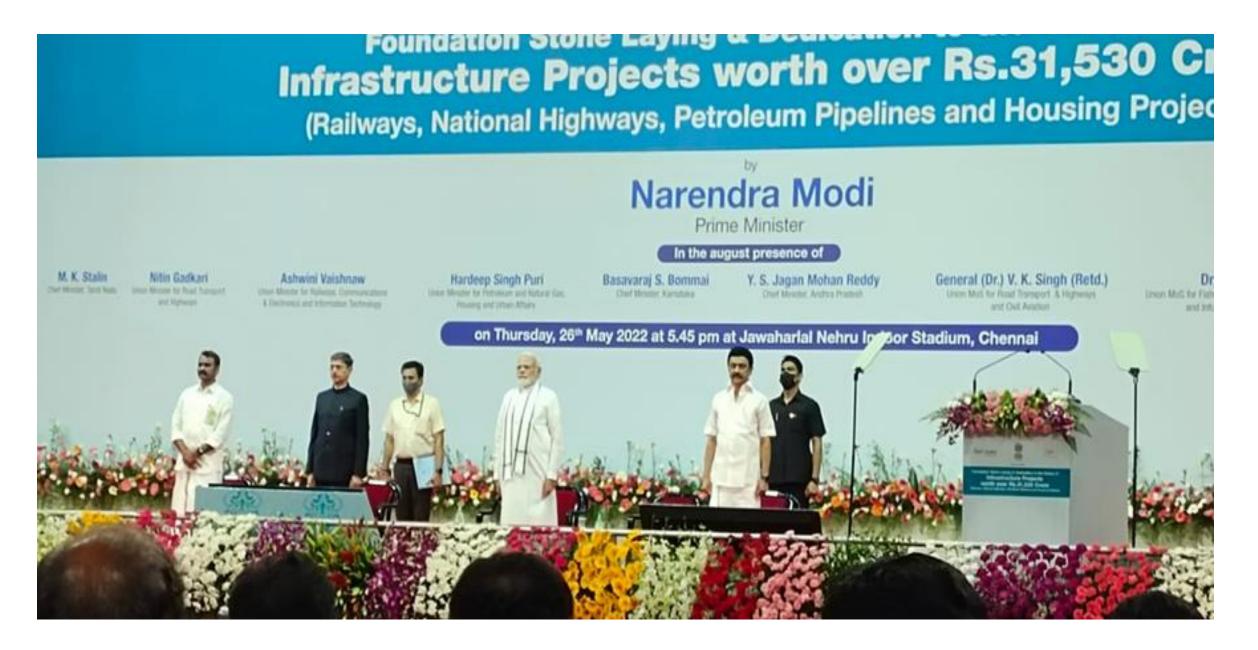
FINISHING ITEMS

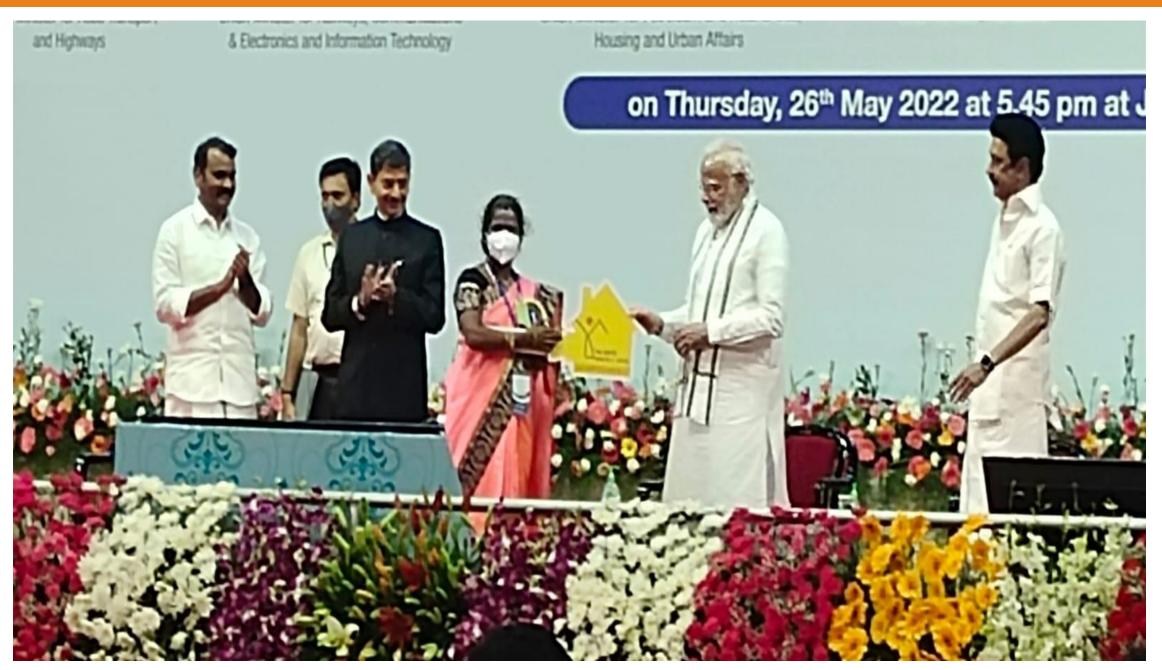
- The finishing items include pressed steel door frame with flush shutters and PVC doors in toilets.
- uPVC frame with glazed panel and wire mesh shutter are used in windows.
- Vitrified tiles are used in flooring in rooms and kitchen.
- Anti-skid ceramic tiles are used in bath & WC.
- Kota stone flooring is used in common areas & Staircase steps.


INFRASTRUCTURE ITEMS

- The external infrastructure includes
- Laying of Sewerage Pipe Line,
- RCC storm water drain,
- Provisions for Fire Fighting
- Bituminous Internal Road & Paver blocks for Pathway,
- Providing Lifts in building blocks,
- Landscaping of site,
- Street light with LED lights,
- Solar Street Light System,
- Sewerage Treatment Plant (STP),
- External Electrification,
- Water Supply System including underground water reservoir,
- Compound wall with Boundary Gates,
- Horticulture facilities,
- Rain Water Harvesting,
- Solid Waste Management.







For More Details Please Visit

https://ghtc-india.gov.in

Thank You

CONTACT US:

Ministry of Housing and Urban Affairs, Maulana Azad Road, Nirman Bhawan, New Delhi - 110011 E-Mail: <u>ghtc-mhua@gov.in</u> / <u>ska@bmtpc.org</u> Call Us at: +91-11-23063266

Webinar Series

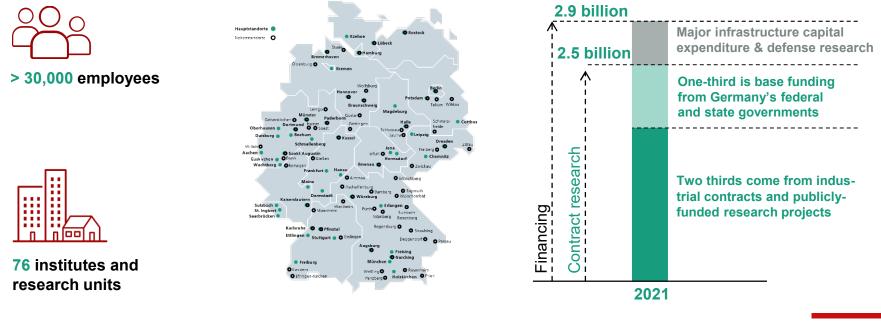
LIGHT HOUSE PROJECT AT CHENNAI

GHTC - India Category:

Precast Concrete Construction System – Precast Components Assembled at Site

Technology:

Industrialized 3-S system using RCC precast Columns, Beams, Semi-Precast Solid Slab with AAC Block masonry


INTRODUCTION

Fraunhofer Society On Applied Science

Applied research with a focus on key future-relevant technologies and the commercialization of findings in business and industry. A trailblazer and trendsetter in innovative developments.

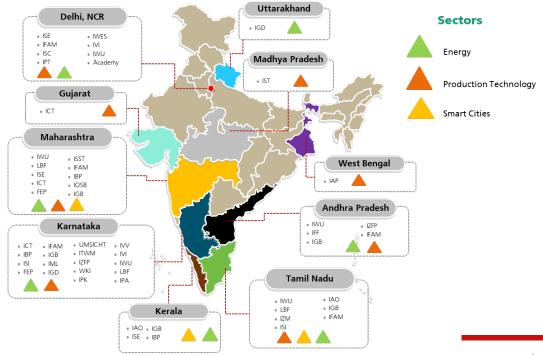
Fraunhofer

Fraunhofer Society – Presence in India

Present since 15 years

- 56 Institutes
- Revenue € 50 M in last 10 years

Focus areas:


- Production Technology
- Renewable Energy
- Smart Cities

Fraunhofer

- Artificial Intelligence
- Electromobility

IBP

Clean Tech and Sustainability

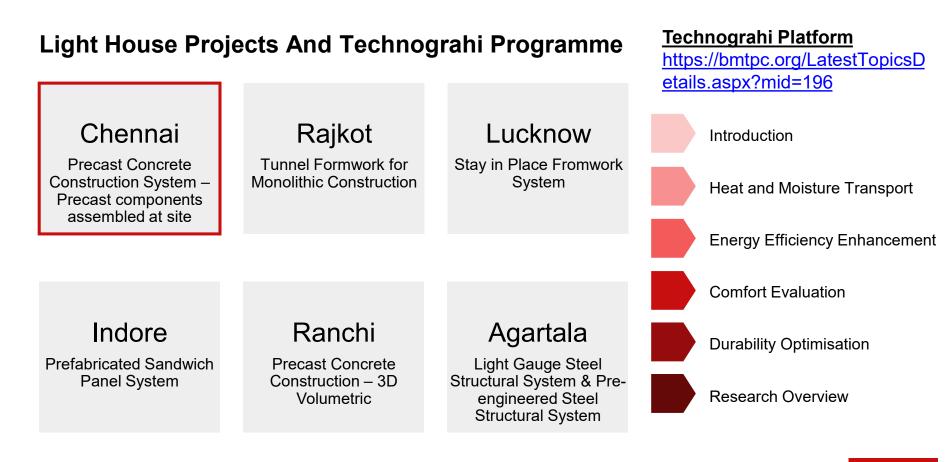
Fraunhofer Institute For Building Physics IBP **S** 45% Industry / trade associations € 20.5 M **38%** Federal / state governments BRANCHES 17% EU / Other External income **Departments Today** LIFE CYCL HYGIENE ACOUSTICS HYGROTHERM **EFFICIENCY** A **MATERIALS A** ENGINEERING AND SENSO **INDOOR CLIMAT** RECYCLING **TECHNOLOGY** © Fraunhofer IBP © Fraunhofer IBP © Fraunhofer IBF O Shutterstock Shutterstock

Light House Projects And Technograhi Programme

Development of short video E-modules on LHP technologies

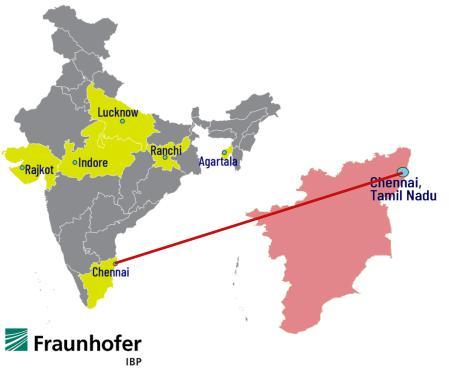
- field application
- merits and limitations
- thermal comfort
- energy efficiency parameters
- durability

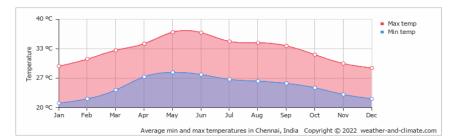
Technograhi Platform

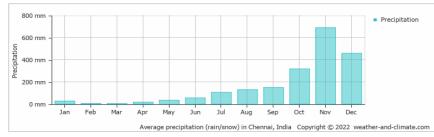

https://bmtpc.org/LatestTopicsDetails.aspx ?mid=196

Sharing of International knowledge, experience and best practices on the LHP construction technologies

- Expert Lectures
- Video tutorials
- Webinars/in-person conference virtual/real* site visits






Location And Climate: Chennai

- Altitude: 15 m
- 12,99 ° North 80,18 ° East

- Mean temperature: 28,4 °C
- Normal-rain-sum: 907,2 mm/a

Structural System – Precast Concrete Construction

- Industrialized 3S (Strength, Safety, Speed) prefab method of construction
- Prefabrication techniques include the on-site assembly of precast hollow columns, beams and partially precast RCC (reinforced cement concrete) solid slabs
- In-situ reinforced concrete laid on top of the slabs to ensure monolithicity
- The filler walls are made of AAC blocks

Structural System – Autoclaved Aerated Concrete (AAC) Blocks

- Lightweight, precast building blocks → reducing load on the concrete structure
- High strength and durability
- Larger dimensions than conventional bricks
 → fewer blocks needed
- Low thermal conductivity (cellular structure) → good insulation

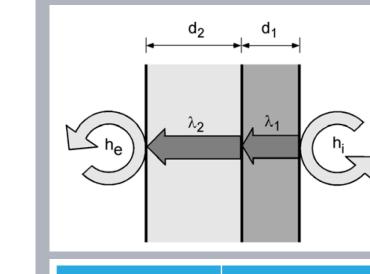
ANALYSIS AND RESEARCH

HEAT TRANSFER

Heat Transfer

The parameter which characterizes the heat transfer through the building envelope is the U-value.

The U-value states the steady-state density of heat transfer rate **per temperature difference** between the environmental temperatures on each side.

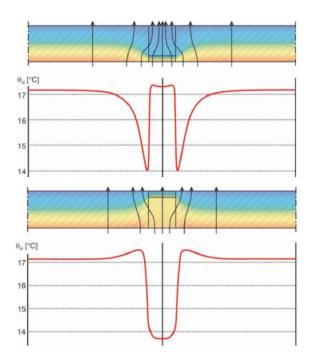

Factors affecting the U-value of opaque areas:

- Thickness and heat conductivity
- Air cavities
- Thermal bridges

$$U = \frac{H_T}{A \cdot \Delta \theta} \left[\frac{W}{m^2 K} \right]$$

 $U \quad U-value [W/m²K]$ $H_T \quad Heat flux (^{d_i}/_{\lambda_i}) [W]$ $A \quad Area [m²]$

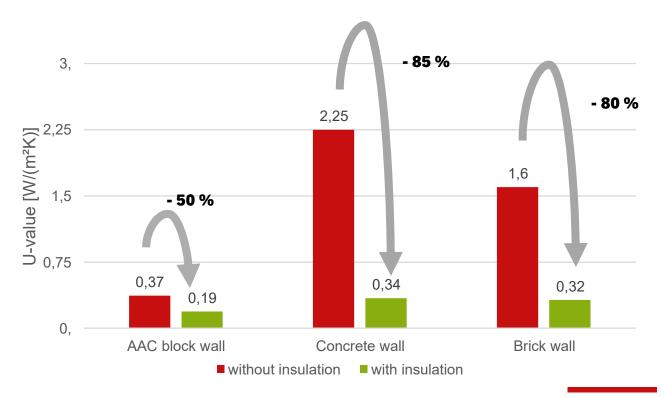
 $\Delta \theta$ Temperature difference [K]



λ [W/mK]
2,5
0,8
0,055
0,045
0,035

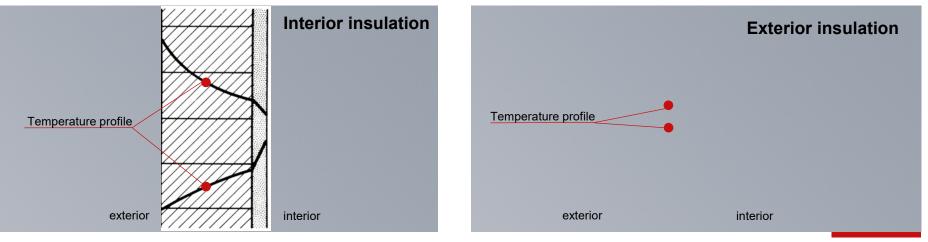
Effects Of Heat Transfer

- High surface temperatures on the inside
- Mould growth on the outside
- High energy demand
 - Wall with U value of 0,4 W/(m²K) gaining 4 W/m²



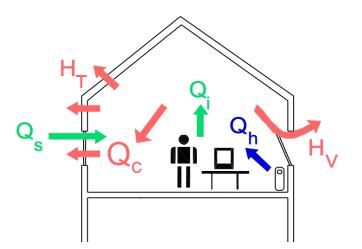
Reduction Of Thermal Transmission – Actual Design

Using 10 cm of light insulation with heat conductivity of 0.04 [W/(mK)].


Reduction of thermal transmission of up to 85% is possible.

Temperature Distribution – Actual Design

Interior thermal insulation brings the interior surface temperature closer to the indoor temperature. This reduces the risk of mould growth. External insulation increase the temperature within the construction. This reduces potential for condensation within the construction.


ENERGY EFFICIENCY IN BUILDINGS

Balancing Basics – Background

$$Q_{in} = Q_{out}$$
$$Q_S + Q_I = H_T + H_V + Q_C$$

- Q_S Solar gain
- Q_I Internal gain
- H_{T} Heat transmission
- H_V Ventilation
- Q_C Cooling demand
- Q_{H} Heating demand

ENERGY EFFICIENCY ENHANCEMENT SIMULATION DEMONSTRATION WITH

Video Placeholder

DURABILITY OPTIMISATION

Internal Resistance – Material Properties

Vapour diffusion μ, sd

Passage of moisture through a building component in the form of water vapor. Moisture storage w = f(p_K)

Function of the ability of a building material to absorb and release moisture.

Water uptake w-value

The property of capillary suction and retention of water.

Durability - Consequences

Mold growth / Algae growth

- High moisture above 80% rel. humidity
- Moderate to high temperatures

Condensation

 Underrun of the dewpoint Corrosion of the construction

- High rel. humidity
- Availability of oxygen

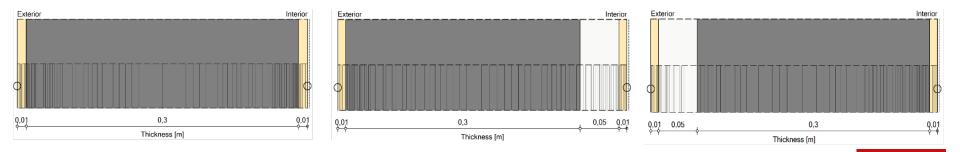
Durability Measurements – System Evaluation

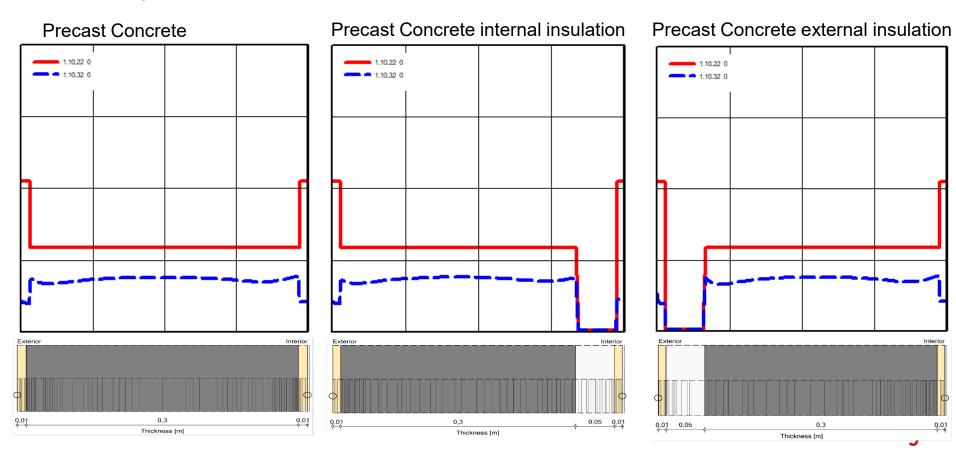
Lab testing of material properties

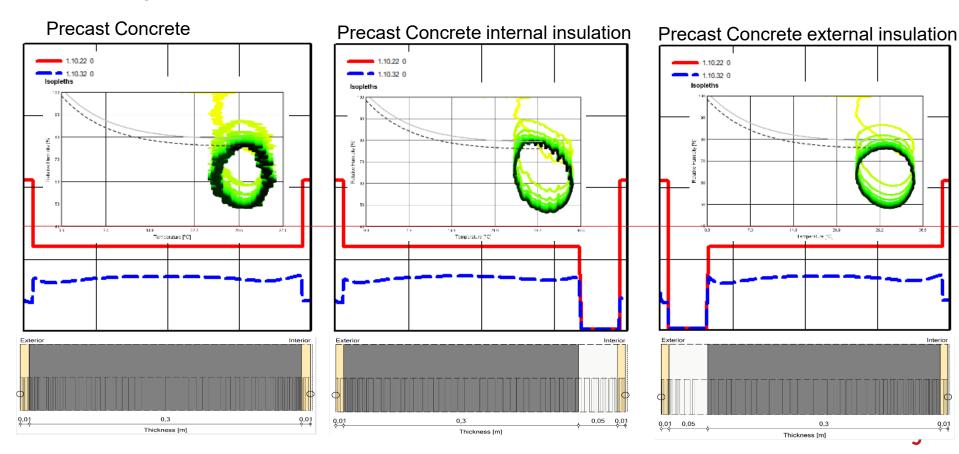
Free field testing of exterior walls

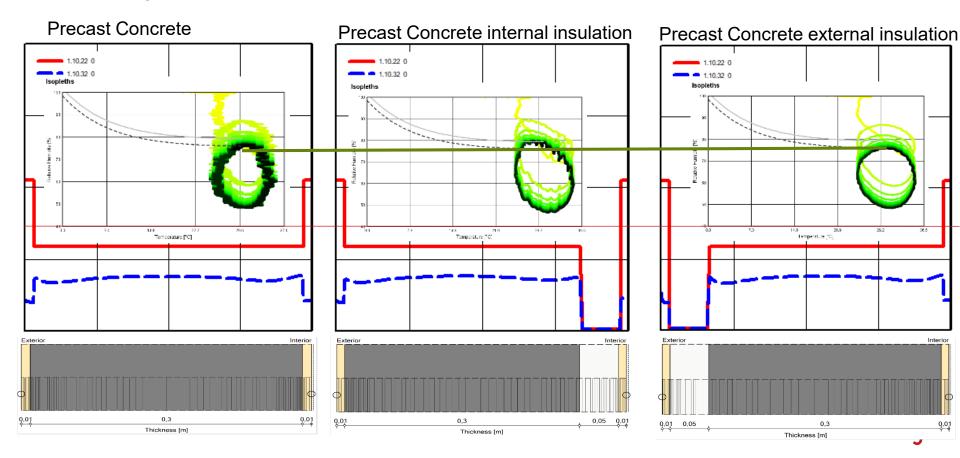
Moisture Control – Using Simulation

Hygrothermal simulation helps to evaluate the construction in an appropriate way in terms of condensation and mould growth.

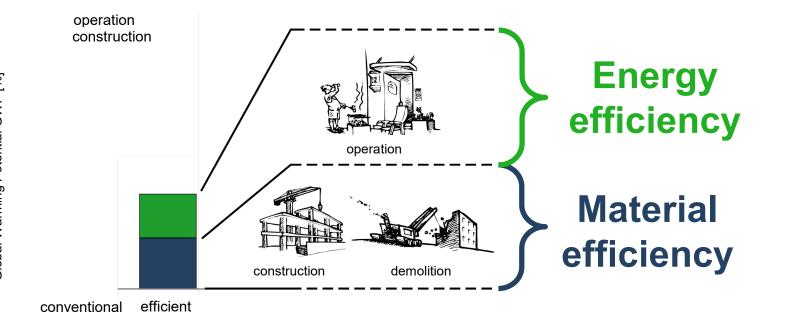





Precast Concrete


Precast Concrete internal insulation

Precast Concrete external insulation



DEVELOPMENT AND POTENTIAL OF AUTOCLAVED AERATED CONCRETE (AAC)

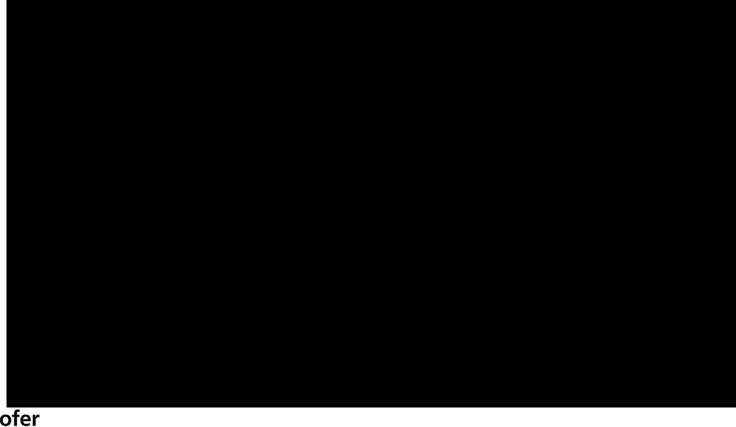
Relevance Of Used Material

AAC Potential For Using By-Products

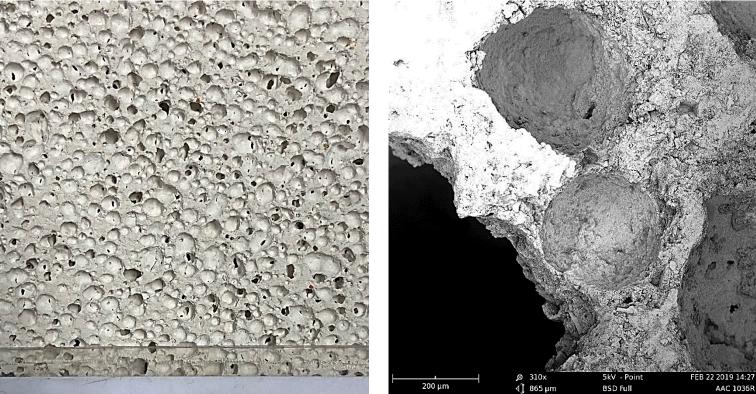
Quartz sand

Quartz-based AAC

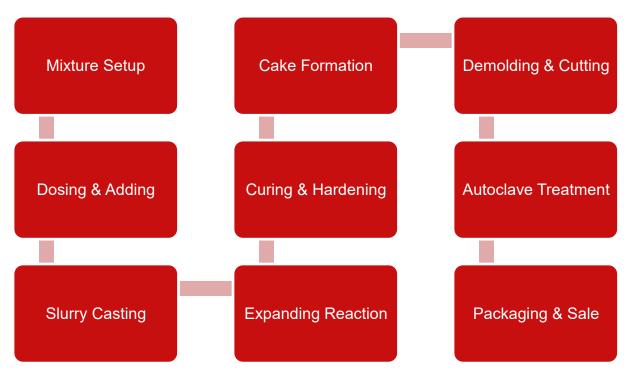
Rice husk


ash-based AAC

Rice husk ash


giz

Production Process Of Autoclaved Aerated Concrete



Porosity Of AAC

Process Of Industrial Production Of AAC

Further Reads, Links

Technograhi Platform

<u>https://bmtpc.org/LatestTopicsDetails.as</u> <u>px?mid=196</u>

<u>AAC</u>

Ministry of Housing and Urban Affairs Government of India

Implemented by

Ministry of Housing and Urban Affairs (MoHUA)

Pradhan Mantri Awas Yojana (Urban) Nirman Bhawan, New Delhi - 110 011 INDIA

Knowledge Partner

www.ibp.fraunhofer.de/en

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

> Climate Smart Buildings (IGEN-CSB) B5/5, Safdarjung Enclave New Delhi - 110 029 INDIA