

Ministry of Housing and Urban Affairs Government of India

LIGHT HOUSE PROJECT: LIVE LABORATORIES

WEBINAR SERIES: e-learning & webcasting of LHPs for TECHNOGRAHIS March – November 2022

An 'e-Learning series and webcasting of LHP's construction process' to widespread the knowledge about the technology, construction process, sustainability, and mass cum fast construction to TECHNOGRAHIs.

Webinar Session #12 at Light House Project Agartala, Tripura

Date: 29.07.2022, Friday Time: 1500

Ministry of Housing and Urban Affairs Government of India

LIGHT HOUSE PROJECT AT AGARTAI A

GHTC-India Category

Light Gauge Steel Structural System & Pre-engineered Steel Structural System

Technology

Light Gauge Steel Framed (LGSF) System with Pre-engineered Steel Structural System

CONTENTS

- GHTC-India
- Six Light House Projects
- LHP at Agartala
- Technology being used
- Structural Elements
 - Foundation
 - Structural System
 - Floor/ Roof Slab
 - Wall Panels

- Light Gauge Steel Framed (LGSF) System
- Design Basis
- Construction Sequence
 - Foundation
 - Structural System
 - Floor/ Roof Slab
 - Wall Panels
 - MEP
 - Finishing
- Other Infrastructure Items

GLOBAL HOUSING TECHNOLOGY CHALLENGE INDIA

Global Housing Technology Challenge - India (GHTC-I)

Broad Category	Technologies (Nos.)
Precast Concrete Construction System - 3D Precast volumetric	4
Precast Concrete Construction System – Precast components assembled at site	8
Light Gauge Steel Structural System & Pre-engineered Steel Structural System	16
Prefabricated Sandwich Panel System	9
Monolithic Concrete Construction	9
Stay In Place Formwork System	8
Total	54

Summary of Six Light House Projects (LHPs)

LHP Location		Chennai	Rajkot	Indore	Ranchi	Agartala	Lucknow	
S1. No	Particulars	Units	(Tamil Nadu)	(Gujarat)	(Madhya Pradesh)	(Jharkhand)	(Iripura)	(Ottar Pradesh)
1	Name of Technology	Name	Precast Concrete Construction System- Precast Components	Monolithic Concrete Constructio n using Tunnel Formwork	Prefabricated Sandwich Panel System	Precast Concrete Construction System – 3D Volumetric	Light Gauge Steel Frame System (LGSF) with Pre- Engineered Steel Structural System	Stay in Place Formwork System
2	No. of Houses	No.	1,152	1,144	1,024	1,008	1,000	1,040
3	No. of Floors	No.	G+5	S+13	S+8	G+8	G+6	G+13
4	Plot Area	Sqm	33,596	39,599	41,920	31,160	24,000	20,000
5	Per House Carpet Area	Sqm	26.58	39.77	29.04	29.85	30.00	34.50
6	Project Cost	INR (in Cr)	116.27	118.90	128.00	134.00	162.50	130.90
7	Per House cost (with infrastructure)	INR (in Lakh)	10.09	10.39	12.50	13.29	16.25	12.58

- Total Plot area is 24168 Sqm.
- Ground coverage of the project is 29% and FAR achieved is 2.43
- Proposed organized green space is 31%.
- The project also includes Anganwadi, Health Centre and community hall of 480 Sqm, 700 Sqm and 500 Sqm respectively in G+1 configuration

Typical floor plan

 16 dwelling units each in A & G Block; 22 Units in B Block; 18 Units in C Block and 24 units each in D,E & F per floor with a provision of lifts and staircase. There are 7 blocks in Ground + 6 configuration with 1000 houses along with basic and social infrastructure. Typical Dwelling Unit plan

Each dwelling unit consists of one living, one bed room, a kitchen, a toilet and a balcony. The carpet area of each unit is 30.03 Sq.mt. The sizes of individual rooms & service areas conform to NBC norms.

Other special features:

- Green rating as per GRIHA
- Use of renewable resources:
 - Rain water harvesting
 - Solar lighting
- Solid waste management
- STP with recycling of waste water
- Fire fighting services as per NBC norms

Prevalent Construction Systems

Technology being Used

Load bearing Structure

Steel Frame Structure

Light Gauge Steel Framed Walling System

RCC Framed Structure

Light Gauge Steel Framed System (LGSF) is based on factory made galvanised light gauge steel components. The components/sections are produced by cold forming method and assembled as panels at site forming structural or non structural steel framework of a building of varying sizes of wall and floor.

In order to meet structural requirements, Hybrid system comprising of Light Gauge Steel Frame System with Pre-Engineered Steel Structural System has been adopted in the present project.

- Foundation
- Structural System
- Floor/ Roof Slab
- Wall Panels

Foundation

- Pile Foundation (Bored Cast-in-situ Concrete Piles) as per geo-technical investigations, bearing capacity, soil strata, water table, etc.
- RCC Raft on the Piles and then RCC pedestal on the Raft
- Anchor bolts and Base plate of varying sizes and diameter as per structural design for erecting Pre-Engineered Steel Structure.
- RCC plinth beam and grade slab at plinth level.
- RCC shear walls for staircases and lift on RCC raft and water proofing with kota stone.

Structural system

 Pre-Engineered Building (PEB) system comprising of built-up fabricated I-sections for beams and columns

Floor/ Roof Slab

 The floor/ roof is deck slab which comprises of deck sheet, reinforcement with concrete screed

Wall Panels – Light Gauge Steel Frame System

- LGSF is a "C" cross-section made of galvanised light gauge steel with built in notch, dimpling, slots, service holes etc. and produced by computerized cold roll forming machine.
- These frames are assembled using self driven metal screws to form into LGSF wall and roof structures
 of a building.
- Provisions for doors, windows, ventilators and other cut outs as required are incorporated in the LGSF.
- Cement concrete panels are fixed on both side of the wall and then filled with light weight concrete.
- Cement fibre board as an alternative to the above panels are used for cladding with infill of rockwool.

Loading the coils in Decoiler

Loading NC files and Operation of computerized Roll forming machine.

Production of frames, Marketing & Labeling

Inspection of frames.

Packing of frames wall wise Marking & Labeling

Dispatch to construction site.

Light Gauge Steel Frame System

Photos of manufacturing plant

Wall Frame

- Factory finished custom designed cold form Light Gauge Steel Framed structure comprising of steel wall panel, trusses, purlins etc are manufactured out of minimum 0.75 mm thick steel sheet as per design requirements.
- The steel sheet shall be galvanized (AZ-150 gms Aluminium Zinc Alloy coated steel having yield strength 300- 550 Mpa) conforming to AISI specifications and IBC 2009 for cold formed steel framing and construction.
- IS 800-2007 (Code of practice for general construction in steel) and IS: 801- 1975 (Code of Practice for Use of Cold Formed Light Gauge Steel Structural Members In General Building Construction.

Wall Frame...contd.

- The framing section shall be cold form C-type having minimum web depth 89 mm x 39mm flange x 11mm lip in required length as per structural design
- Duly punched with dimple/slot at required locations as per approved drawings.
- The slots will be along centre line of webs and shall be spaced minimum 250mm away from both ends of the member.
- The frame can be supplied in panel form or knock down condition in specific dimensions and fastened with screws extending through the steel beyond by minimum of three exposed threads.
- All self drilling tapping screws for joining the members shall have a Type II coating in accordance with ASTM B633(13) or equivalent corrosion protection of gauge 10 & 12, TPI 16 & 8 of length 20mm.
- The frames shall be fixed to RCC slab or Tie beam over Neoprene rubber using self expanding carbon steel anchor bolt of dia as per approved drawings, design subject to minimum 12mm diameter and 121mm length conforming to AISI 304 and 316 at 500mm c/c with minimum embedment of 100mm in RCC and located not more than 300mm from corners or termination of bottom tracks complete in all respects.

Wall Frame...contd.

- Fasteners and Connectors
 - Frame assembly screws: Shall be galvanized steel screws self-drilling type of size 10 x 25 mm having Truss-head and shall be as per ASTM C 1513-10.
 - Wall Erection Screws: Shall be galvanized steel screws self-drilling type of size 8 x 25 mm having Hex Washer head and shall be as per ASTM C 1513-10.
 - **Precast Concrete Panels Fixing Screws**: Shall be of galvanized steel screws self-drilling type of size 8 x 50 mm having CS head and shall be as per ASTM C 1513-10.
 - Wall and Foundation Anchor Bolt: Shall be of high tensile galvanized steel of size 10 x 100 mm/ 10 x 150 mm and 12 x 100 mm/ 12 x 150 mm and shall be as per ASTM C 1513-10.

Cold-formed steel structural members with perforations (service openings and opening for continuity members)

• Wall Frame...contd.

- Cladding of LGSF Panels
 - 20mm thick Precast Concrete (M20) Panels (PCP) are used as facing sheets for construction of walls on both sides. Metal moulds, concrete mixing machine and vibration tables are used for manufacturing the panels at onsite or offsite.
 - The panels are designed to withstand the concrete weight pumped in between the gap of the panels without failure and buckling.
 - The steel reinforced precast concrete panels (PCP), has one side rough surface and the other side smooth surface. The PCP's are fixed on either side of Light Gauge Steel Frame Structures (LGSFS) with studs and tracks using mechanical fasteners. While fixing, the rough side of the panels are facing inside and smooth side is facing outside. Each PCP is fixed with 6 screws.
 - Light weight concrete is pumped in to the gap between two PCPs. The concrete bonds with the rough surface of the panels. Thus, the LGSFS and PCPs are firmly joined to make a monolithic steel– concrete structure.

• Wall Frame...contd.

- Core of wall panels
 - The concrete used for infill wall is light weight and free flow.
 - The density shall be 1500-1800 Kg/m³ after adding/mixing foam or EPS beads as per the design mix. The light weight concrete shall be of grade M5 to M10 as required.
 - The light weight concrete shall be mixed and used at site.

Structural connections of LGSF panels

Advantages

- Due to light weight, significant reduction in design earthquake forces is achieved.
 Making it safer compared to other structures.
- Fully integrated computerised manufacturing of LGSF sections provide very high precision & accuracy.
- Speedier
- Structure being light, does not require heavy foundation
- Structural elements can be transported to any place including hilly areas/ remote places easily
- Structure can be shifted from one location to other with minimum wastage of materials.
- Steel used can be recycled multiple times
- The system is very useful for post disaster rehabilitation work.

Essential Requirements

- The labours are required to be trained for fabrication/assembly works
- Plumbing & electrical services need to be preplanned.
- Door and Window position shall not be changed after pouring of light weight concrete.
- Erection of panels shall be under supervision of trained staff.
- Post construction alteration is difficult.
- Proper care should be taken for fixing of tiles on the walls.
- Electrical cables need to be properly insulated with mini circuit breakers.

Being first time mass scale field implementation of new technology the Light House Project at Agartala is on **Design & Build Basis**

Technology Provider and Construction Agency: M/s Mitsumi Housing Pvt. Ltd., Ahmedabad

Design Basis

- Structural Frame as RC Steel Hybrid structure
 - Sub-structure up to the plinth level in RCC
 - Superstructure is wall using HR Steel built-up I sections with lift and staircase wells in RCC as shear wall
- Vertical Safe Design Load: 70 MT, Lateral Safe Design Load: 2.2MT
- Pile foundation as per IS-2911(Part1):2010
- Raft foundation as per IS-2950 (Part-1)-1981 (reaffirmed 2008)
- Wind speed: Very high damage risk zone with basic wind speed (V_b=55m/sec)
- Design wind speed:
 - $V_z = V_b \cdot k_1 \cdot k_2 \cdot k_3 \cdot k_4$
 - k₁ (Risk Coefficient)=1
 - k₂ (Size factor)=as per height
 - k₃ (topography factor)=1
 - k₄ (importance factor)=1
- Wind Pressure $(P_z) = 0.6.Vz^2$
- Wind pressure is converted into design wind pressure and then distributed at each storey as wind force.

BMTPC : Vulnerability Atlas- 3rd Edition; Peer Group, MoHUA; Map is Based on digitised data of SOI, GOI; Basic Wind Speed Map National Building Code: 2016; Cyclone Data, 1891-2015, IMD, GOI. Houses/Population as per Census 2011; "Houses including vacant & locked houses. Disclaimer: The maps are solely for thematic presentation.

Design Basis

- Earthquake : Zone-V as per Seismic Zoning Map of India IS: 1893 (Part-1):2016
 - Designed as ductile RC structural walls and few special moment resisting frames in structural steel in both direction, as per Table 9 (iv) (d) of IS 1893 (Part I): 2016.
 - Zone factor 0.36 (As per Table 3-IS:1893-2016), Importance factor 1.2 (As per Table 8-IS:1893-2016), Response Reduction Factor 5 (As per Table 7-IS:1893-2016) and Damping Ratio 5%.
 - Design Horizontal Seismic Coefficient (A_h)

 $A_{h}=(Z/2).(S_{a}/g).(I/R)$

 S_a/g is design acceleration coefficient for different soil types corresponding to natural period (T) of building

Design Lateral Force (V_B)

V_B=A_h.W

W is seismic weight of building

- Linear dynamic analysis has been done to obtain the design lateral forces
- Steel columns fixed for moment frames and pinned for ordinary frames at top of RC pedestal and support reaction at the location for sub-structure design. Some columns beams frames as rigid joint frames to cater lateral loads in addition to gravity loads and other as pinned jointed frames to cater gravity loads only.
- Rigid diaphragms in horizontal direction at floor levels as per Cl.7.6.4 of IS:1893(Part-1):2016.
- Design has been carried out as per IS 456-2000, IS 800-2007 and NBC-2016.

Loads

Is:875 (part-1)-1987 (reaffirmed 2018)	Code of practice for design loads (other than earthquake)for buildings and structures part 1 dead loads - unit weights of building material and stored materials (incorporating is:1911-1967)
Is 875 : part 2 : 1987 (reaffirmed 2018)	Code of practice for design loads (other than earthquake) for buildings and structures: part 2 imposed loads
Is 875 : part 3 : 2015	Design loads (other than earthquake) for buildings and structures - code of practice - part 3 wind loads
Is 1893: part 1 : 2016	Criteria for earthquake resistant design of structures - part 1 : general provisions and buildings

Structural Steel

Is 800 : 2007 (reaffirmed 2017)	General construction in steel - code of practice
Is 801 : 1975 (reaffirmed 2016)	Code of practice for use of cold formed light gauge steel structural members in general building construction
Is 806 : 1968 (reaffirmed 2017)	Code of practice for use of steel tubes in general building construction
Is 808 : 1989 (reaffirmed 2014)	Dimensions for hot rolled steel beam, column, channel and angle sections
ls 813 : 1986	Scheme of symbols for welding
18: 816-1969	CODE OF PRACTICE FOR USE OF METAL ARC WELDING FOR GENERAL
(REAFFIRMED 1969)	CONSTRUCTION IN MILD STEEL
ls 1161:2014	Steel tubes for structural purposes
ls 2062:2011	Hot rolled medium and high tensile structural steel
Is 4000 : 1992 (reaffirmed 2017)	Code of practice for high strength bolts in steel structures
ls 4923:2017	Hollow steel sections for structural use — specification (second revision)
ls 11384 : 1985	Code of practice for composite construction in structural steel and concrete
(reaffirmed 2017)	

RCC

Is 456 : 2000 (reaffirmed 2016)	Plain and reinforced concrete - code of practice
Is 3370 : part 1 : 2009	Concrete structures for storage of liquids - code of practice - part 1 : general
(reaffirmed 2019)	requirements
Is 3370 : part 2 : 2009	Concrete structures for storage of liquids - code of practice - part 2 :
(reaffirmed 2019)	reinforced concrete structures
ls 4326 : 2013	Earthquake resistant design and construction of buildings - code of practice
(reaffirmed 2018)	
ls 5525 : 1969	Recommendations for detailing of reinforcement in reinforced concrete works
(reaffirmed 2018)	
ls 1786 : 2008	High strength deformed steel bars and wires for concrete reinforcement -
(reaffirmed 2018)	specification
ls 10262 : 2019	Concrete mix proportioning-guidelines
ls 13920 : 2016	Ductile detailing of reinforced concrete structures subjected to seismic forces - code of practice

Foundation

Is 1080 : 1985 (reaffirmed 2016)	Code of practice for design and construction of shallow foundations om soils (other than raft, ring and shell)
Is 1904 : 1986 (reaffirmed 2015)	Code of practice for design and construction of foundations in soils: general requirements
Is 2950 : part 1 : 1981 (reaffirmed 2018)	Code of practice for design and construction of raft foundations - part 1 : design
IS 2911 (Part 1& 4) : 2013	Design and construction of pile foundations — code of practice
Is 2974 : part 5 : 1987 (reaffirmed 2018)	Code of practice for design and construction of machine: foundations part 5 foundations for impact machines other than hammers (forging and stamping press, pig breakers, drop crusher and jolter)
Is 8009 : part 2 : 1980 (reaffirmed 2015)	Code of practice for calculation of settlement of foundations: part 2 deep foundations subjected to symmetrical static vertical loading

STRUCTURAL ANALYSIS & DESIGN

- 3D Model of typical tower with PEB Structure
- Load Combinations :
 - 1.5 (DL+LL)
 - 1.2 (DL+LL<u>+</u>EL/WL)
 - 1.5 (DL<u>+</u>EL/WL)
 - 0.9DL <u>+</u>1.5EL/WL

(EL/WL implies Earthquake/Wind Load in +X, -X, +Y, and -Y, directions . Lateral forces shall be considered acting from all directions but one at a time.)

- Steel structural system can be easily modeled in the CAD software such as STAADPRO, ETABS, SAFE, SAP, ABACAS and others for detailed structural analysis.
- 2D/ 3D Static and dynamic linear and nonlinear analysis can be carried out using these softwares.
- The softwares can also be used for structural design as per Indian Standards.
- AUTOCAD for drawings

Construction Sequence

Foundation

- Sub-Structure:
- Super-structure: Structural system
 Floors
 Wall Panels
 MEP: Plumbing & Electrical
- Finishing

Structural Drawings

FOUNDATION

FOUNDATION

• A section showing the placing of raft on the piles.

• The RCC raft is casted on the piles. Then concrete pedestal are casted in M25 concrete.

FOUNDATION

FOUNDATION

 A section of the foundation showing the raft, concrete pedestal, location of the anchor bolts & base plate and steel column in superstructure.

 Fixing of anchor bolts with templates over which factory made built up columns with base plate will be erected.

Anchor Bolt & Base Plate Plan

- Connection details of built up steel column at plinth level (Stilt) with foundation (plinth beam)

Dia (mm)	H (mm)	h (mm)	T (mm)
16	400	100	100
24	500	100	150
28	700	100	150
32	900	150	150
36	1100	150	150

Anchor bolt schedule

a) Typical anchor bolt detail

Anchor bolt is inserted below plinth level upto height H and projected above plinth up to height T

b) Typical base plate detail

The built up steel I column is being fixed with anchor bolts and base plate

• On concrete pedestal, plinth beam are casted in M25 concrete and backfilling is done.

- The project starts with layout and marking of piles on field.
- After the layout at site, the boring of piles is undertaken with the help of Hydraulic Rigs. The depth of the borehole is 30m from NGL and diameter of pile is 600 mm. Total number of piles in the project is approx. 1750.

• Steel Cages with helical reinforcement are prepared at site and inserted in the pile holes.

- After flushing of bore hole with bentonite slurry, pouring of M 30 Grade concrete through trimming pipe in piles is undertaken.
- Laying of Raft in M30 concrete as per the structural design with reinforcement is to be completed in concrete above the piles.

Concrete & Reinforcement Steel Specifications

Item	Concrete Grade
Piles, raft, shear wall	M30
Plinth beam, Grade slab, Pedestals, Water	M25
tank, Sewage Treatment Plant (STP)	

- Mix design for concrete and all Concrete work shall conform to IS 456-2000 & Liquid retaining structures shall conform to IS 3370:2009
- Reinforcement Steels being used is TMT bars of Fe 500 as per IS 1786-2008.

Concrete mix design M25 and M30 (IIT Delhi)

Amrit Ce	ement		-							-	a 1
Concrete Grade			Fine Aggregate		Coarse Aggregate		Plasticizer	Slump		Comp. Strength	
	Water C	Cement	Zone-IV	Zone-II	10mm	20mm		Initial	After I hour	7 days	28 days
M 20	165	387	217	506.4	434	651	1.25%	170	145	31.63	40.89
M-25	170	347	219.4	512	439	658	1.00%	155	120	24.52	34.52
Delatio	amont										
Dalmia Cement		Cine An	areaata	Coarse Agoregate		Plasticizer	Slump		Comp. Strength		
Concrete Grade	Water	Cement	Zone-IV	Zone-II	10mm	20mm		Initial	After I hour	7 days	28 days
0.000		207	217	506.4	434	651	1.25%	175	155	33.63	41.7
M-30	165	387	21/	500.4	434	658	1.00%	150	130	23.55	33.93
M-25	170	347	219.4	512	439	0.00	1.0070				

28 days Target Strength: M30- 38.25MPa 28 days Target Strength: M25- 31.65MPa

Dynamic Load Test

Batching Plant

To bring resource efficiency, optimization of building materials and for quality control, a computerized batching plant has been established at site.

Concrete Testing

Quality control and quality assurance is essential for a project and therefore a quality control lab has been established at site for testing of raw materials and finished products.

In the present lecture, the structural system and other details are being explained through drawings, sketches and text.

The work on super-structure is yet to start and actual on-ground picture will be covered subsequently.

Column-Column Connections

a) Column Splice detail

Columns are being spliced through nut & bolts connection along with plates both in web and flange portion

b) Shear wall to steel beam connection

Insert plate along with lug bar are cast during the casting of shear walls and steel beam is connected to the wall with bolted connection through insert plate

Typical beam column shear and moment connections

CAL

· 20

a) Typical beam to column flange shear connection

Steel beam is being connected to the column through cleat angle connected to the web portion of beam

b) Typical beam to column flange moment connection

The steel beam is being connected to column through plates on flange & web portion

Steel column layout in superstructure

C3

C4

350x8

350x8

350x8

350x6

175x10

175x10

350x6

350x6

175x10

175x10

175x12

175x10

STRUCTURAL SYSTEM

Current Progress

Current Progress

Current Progress

FLOORS

Floor slab details : Deck slab

- After erection of steel beams and column (PEB Structure), steel deck sheet of thickness 0.9 mm are placed with required bearing on the beams.
- Concrete screed of 75 mm is poured on the deck sheet in M25 with reinforcement as per structural design.
- Structural design for reinforcement is as per IS 456-2000.
- Generally, nominal reinforcement is provided in concrete screed of deck slab to take care of shrinkage & cracking.

a) Typical deck sheet profile

FLOORS

Typical Floor Framing Plan

ab and reinforcement

D

20

WALL PANELS

Construction & Installation Process with LGSF

Construction is done in a following sequential manner:

- 1. Transportation of LGSF and Steel Sections as per the design to the site.
- 2. Erection of built up sections for structural frames on RCC foundations using cranes and connections as designed (connection details already explained)
- 3. Installation of decking sheets on structural frame at floor level followed by pouring of concrete screed with nominal reinforcement.
- 4. Fabrication of LGSF frames with the connecting screws at site as per design.
- 5. The wall position shall be marked on the floor and the wall structure placed on the marking. After completing the same, straightness, square and the levels shall be checked by magnetic spirit level. The bottom track shall then be connected with the floor using anchor bolts at the required spacing.
- 6. The precast concrete panels shall be fixed on the LGSF wall structure on studs and tracks by using metal screws. The panels shall be fixed first on the outer side of the LGSFS wall. Electrical/plumbing pipes/conduits shall be fixed as designed and cut-outs for services shall be marked on the panel.
- 7. Self-compacting concrete of required grade/light weight concrete shall be mixed using concrete mixing machine and then pumped into the gap between two panels using a special pumping unit.
- 8. Upon installment of wall panels, flooring and ceiling, the finishing work is executed.

Wall Panels

• Typical view of LGSF panels and steel frame construction

 The plumbing and electrical services are incorporated before laying of light weight concrete between the panels

FINISHING ITEMS

- The finishing items include pressed steel door frame with flush shutters and PVC doors in toilets.
- uPVC frame with glazed panel and wire mesh shutter are used in windows.
- Vitrified tiles are used in flooring in rooms and kitchen.
- Anti-skid ceramic tiles are used in bath & WC.
- Kota stone flooring is used in common areas & Staircase steps.

OTHER INFRASTRUCTURE ITEMS

- The external infrastructure includes
- Laying of Sewerage Pipe Line,
- RCC storm water drain,
- Provisions for Fire Fighting
- Bituminous Internal Road & Paver blocks for Pathway,
- Providing Lifts in building blocks,
- Landscaping of site,
- Street light with LED lights,
- Solar Street Light System,
- Sewerage Treatment Plant (STP),
- External Electrification,
- Water Supply System including underground water reservoir,
- Compound wall with Boundary Gates,
- Horticulture facilities,
- Rain Water Harvesting,
- Solid Waste Management.

Live status of LHP site can be accessed at

https://ghtc-india.gov.in

CONTACT US:

Ministry of Housing and Urban Affairs, Maulana Azad Road, Nirman Bhawan, New Delhi - 110011 E-Mail: <u>ghtc-mhua@gov.in</u> / <u>ska@bmtpc.org</u> Call Us at: +91-11-23063266

LIGHT HOUSE PROJECT: LIVE LABORATORIES

WEBINAR SERIES: e-learning & webcasting of LHPs for TECHNOGRAHIS March – November 2022

An 'e-Learning series and webcasting of LHP's construction process' to widespread the knowledge about the technology, construction process, sustainability, and mass cum fast construction to TECHNOGRAHIs.

Webinar Session #12 at Light House Project Agartala, Tripura Date : 29.07.2022, Friday | Time : 3:00 PM

Emerging Housing Technologies

Ministry of Housing and Urban Affairs Govt. of India

Emerging Building Materials and Construction

QUESTIONS?

What are the conventional construction materials & technologies available for building houses ?

Are the conventional materials & technologies adequate and sustainable in present situation?

Emerging Building Materials and Construction

QUESTIONS?

What are the opportunity and trends ?

IOL

RESOURCE vs. CONSTRAINTS

RESOURCE VS. CONSTRAINTS

PMAY(Urban) MissionVerticals

4 Mission verticals suiting the needs of individuals based on the geographical conditions, topography, economic conditions, availability of land, infrastructure etc

PMAY(U) Achievements at a Glance

Houses under PMAY(U) Grounded 102.23 Assessed 1.12 Cr for Lakh Demand Construction 57.01L Completed/ 1.22Cr Sanctioned Delivered akh New 16 **CLSS** 20.63 technology **Beneficiaries** Lakh Lakh houses

Total Investment **₹ 8.25 Lakh Cr**

Central Assistance Approved ₹ 2.01 Lakh Cr

Central Assistance Released ₹ 1.20 Lakh Cr

BLC Houses 72.36 Lakh

AHP Houses 20.63 Lakh

ISSR Houses 2.91 Lakh CLSS Houses 2.76 Lakh

RESOURCE VS. CONSTRAINTS >>BASIC

Conventional Construction Practices have so far served well the construction industry

Can it face the present challenges now?

Challenges

- Depleting natural resources threatening the environment.
- Energy intensive and polluting manufacturing practices
- Massive construction in a short time requiring speed, quality and durability.
- Rising cost of building materials
- Shortage of construction workers in urban areas
- Requirement of Fast construction in stipulated time
- Need for thermal comfort and sustainability
- Dust Free site condition
- Quality & Durability
- Disaster resilience

The Ratification of the Paris **Agreement on Climate Change** brings **Country's Commitment to** reduce greenhouse gas emission intensity of its GDP by 33-35% below 2005 levels by 2030

MODULE 2: RESOURCE VS. CONSTRAINTS

Basic materials Used

Burnt Clay Bricks

Cement + Mortar +

Concrete

Steel reinforcement

MODULE 2: RESOURCE VS.

RESOURCE REQUIREMENT FOR CONSTRUCTION OFHOUSES(average carpet area 25 sqm/du)

Environmental Issues associated with Conventional Materials

Conventional building materials are naturally derived, over dependence on them can be hazardous to environment.

- They can not be depended upon for regular supply

MODULE 2: RESOURCE VS. CONSTRAINTS >>

Burnt Clay Brick Industry uses top fertile soil and is highly energy intensive and polluting due to prevalence of obsolete production

MODULE 2: RESOURCE VS. CONSTRAINTS >> BURN

BRICK PRODUCTION

2ND LARGEST PRODUCER AFTER CHINA [BTRs 74% ; Clamps 21%]

Brick making enterprises Brick making fuel used Annual Brick production Coal / biomass Consumption CO₂ emission Clay Consumption 1,40,000Coal & biomass240 - 260 billion35-40 million ton66 million ton500 million m³

MODULE 2: RESOURCE VS. CONSTRAINTS >> BURN Energy intensive

Coal consumption is 8% of the total consumption (third largest consumer after power & steel)

MODULE 2: RESOURCE VS. CONSTRAINTS >> BURN

Bottom ash in kiln causes health problems

DOUDC

MODULE 2: RESOURCE VS. CONSTRAINTS >> BURN

Pollution and health issues

City Pollution Large brick clusters around Indian cities cause air pollution and affects air quality

MODULE 2: RESOURCE GENERATION VS.

State-wise demand of Sand for construction

Precious resource

The construction industry in almost every state is facing an acute shortage of sand

MODULE 2: RESOURCE GENERATION VS. CONSTRAINT >>AGGREGATES

The mining of aggregates has reached a level of threatening the environment ecosystem besides reaching a level of scarcity that would threaten the economy. MODULE 2: RESOURCE GENERATION VS. CONSTRAINTS >>NON AVAILABILITY OF RESOURCE MATERIALS

Measures taken to curb the scarcity of AGGREGATE

1. Sustainable sand mining management guidelines (Ministry of Environment, Forest and Climate change-Sept 2015) recommends scientific assessment and best practices for quarrying and mining of sand.

MODULE 2: RESOURCE GENERATION VS. CONSTRAINTS >>NON AVAILABI

Measures taken to curb the scarcity of AGGREGATE

RESOURCE MATERIALS

3. Many states have banned mining

MODULE 2: RESOURCE VS. CONSTRAINTS >>

MODULE 2: RESOURCE GENERATION VS. CONSTRAINTS

Challenges and Problems

CONSERVATION OF LIMESTONE: Total cement grade limestone reserve available to meet industry requirement -89,862 MT. Current limestone resources expected to last for 35-41 years!

Highly energy intensive 5-8 MJ/kg

MODULE 2: RESOURCE GENERATION VS. CONSTRAINTS

3

AIR Pollution: CO₂ release of 258.366 MT per year (National avg: 0.85 of CO₂ per 1Tonne of cement)

MODULE 2: RESOURCE GENERATION VS.

GUNƏTRAINTƏ >>MATER

Potable water – increases water demand and puts stress on existing resources Water is not available in many construction sites, causing bad quality of construction and poor durability of structures MODULE 2: RESOURCE GENERATION VS. AVAILABILITY >> OTHER

Shortage of Skilled and Unskilled Manpower

125

Acute shortage of labour in urban areas.

The shortage or low productivity of labour directly affects the project time and brings cost overrun

MODULE 2: RESOURCE GENERATION VS. CONSTRAINTS >>OTHER

Weather also affects conventional construction progress and material storage.

MODULE 2: RESOURCE GENERATION VS. CONSTRAINTS >>OTH

Pollution and Waste

Site construction practices generate dust and waste which affect the local environment.

MODULE 2: RESOURCE GENERATION VS. CONSTRAINTS >> OTH

Bricks, cement and mild steel share major cost of the building

0.5

About 51.5% of cost of construction is for building materials like bricks, cement and steel and 25% of cost of construction is for labour

charges.

...g cost

6Z.5

CRITICAL CHALLENGES

cost effectiveness

Background

For constructing dwelling units Judicious selection of technologies is required

Technology Sub-mission - GHTC India, IHTM

Promoting use of rapid, resource efficient, disaster resilient construction technologies

Global Housing Technology Challenge - India (GHTC-I)

Categories	Technology	Tech. Providers
1	Precast Concrete Construction System - 3D Precast volumetric	4
2	Precast Concrete Construction System – Precast components assembled at site	8
3	Light Gauge Steel Structural System & Pre- engineered Steel Structural System	16
4	Prefabricated Sandwich Panel System	9
5	Monolithic Concrete Construction	9
6	Stay In Place Formwork System	8
	Total	54

onventional Construction Systems	Alternate Construction Systems	
Slow	Fast	
Maximum Use of Natural	Optimum use of Resources	
Resources	Minimum Waste	
Waste Generation	Minimum Pollution	
Air/Land/Water Pollution	Industrialized System	
Labour Intensive	Cost-effective Design	
Prescriptive Design	Better health & Productivity	
Unhealthy Indoor Quality	Low Life Cycle Cost	
Regular Maintenance	Energy Efficient	
Energy Intensive	Factory Made Quality Products	
Cast-in-situ Poor Quality	Low GHG Emissions	
High GHG Emissions	Sustainable	
Unsustainable		

Light House Projects

Hon'ble Prime Minister laid the foundation stone of six LHPs on 01.01.2021

Technologies Evaluated & Recommended>> Precast Prefab Concrete Construction

Precast Prefab Concrete Construction-Components assembled at site

- Based on factory mass manufactured standardized structural prefab components conforming to relevant Indian Standards.
- Modular, prefabricated industrialized system best suited for mass housing.

Precast Prefab Concrete Construction>> Factory Set-up

Global Housing Technology Challenge - India (GHTC-I)

Precast Concrete Construction System – Precast components assembled at site

1	Precast Large Concrete Panel (PLCP) System with structural members (wall, slab etc.) cast in a factory/ casting yard and brought to the building site for erection & assembling	Larsen & Toubro
2	Pre-cast Concrete Structural system comprising of pre-cast column, beam, precast concrete / light weight slab, AAC blocks/ infill concrete walls.	B.G. Shirke Construction Technology Pvt. Ltd
3	Optimal Pre-cast concrete System through structural Analysis, design & equipment support	Elematic India,
4	Precast concrete construction system using precast walls with precast plank floor	PG Setty Construction Technology Pvt Ltd,
5	Precast components comprising of beams, coloumns, staircase, slab, hollow core slab etc. manufactured in plant & erected on site	Teemage
6	Pre-cast sandwich panel system & Light weight Pre cast Light Weight concrete slab	Nordicflex
7	Prefabricated Interlocking Technology (without mortar) with Roofing as Mechnized Precast R.C. Plank & Joist system	Adalakha Associates Pvt. Ltd
8	Large Hollow wall prefab concrete Panel (lightweight, interlocking, concrete panel) using factory produced large standard hollow	William Ling,

PRECAST CONCRETE-3D MONOLITHIC VOLUMETRIC

Global Housing Technology Challenge - India (GHTC-I)

Precast Concrete Construction System – 3D Volumetric

- 1 Pre-cast concrete system with columns, beams, Katerra walls, slabs, hollow core slabs & also 3D Volumetric components
- 2 Vertical structural modules cast in Plant/Casting Moducast Pvt. Ltd yard are assembled together through casting of floor panel. The unit is transported & installed at site.
- 3 3D Modular casting using steel mould and high Magicrete performance concrete of building modules in Building Solutions, factory. These pods are transported to the construction site & assembled
- 4 Modules with 3D Volumetric Precast concrete Ultratech Cement unit, various units make on house Ltd,

Technologies Evaluated & Recommended>> Monolithic Concrete Construction using modular Aluminum or Tunnel formwork

Monolithic Concrete Construction using modular Aluminum orTunnel formwork system

A typical plan of one of the mass housing projects

Tailor-made Modular formwork made of Aluminum with about 100 repetition potential

Or

- Tailor made Tunnel formwork system made of steel with about 1000 repetition potential
- Walls constructed as shear wall in monolithic way with slabs.

Global Housing Technology Challenge - India (GHTC-I)

3

1	Aluminium formula quators for	Maini Cooffold
L.	Aluminium formwork system for	Maini Scariolo
	Monolithic Concrete construction	Systems
2	Aluminium formwork system	KumkangKind India
	for Monolithic Concrete	Pvt. Ltd
	construction	
2	Aluminium formwork system	S form India Dut
5	Aluminum formwork system	5-101111 IIIula PVL
	for Monolithic Concrete	Ltd.,
	construction	
4	Aluminium formwork system for	ATS Infrastructure
	Monolithic Concrete construction	Ltd.
5	Aluminium formwork system for	Innovative housing
Ū	Monolithic Concrete construction	& Infrastructure Dyt
	Woholithic concrete construction	
		Lta
6	Aluminium formwork system for	MFS formwork
	Monolithic Concrete construction	Systems Pvt. Ltd.
7	Aluminium formwork system	Knest
	for Monolithic Concrete	Manufacturers LLP
	construction	
•		Outin and
ð	Tunnel form construction technology, an	Outinord
	cast in situ RCC system, based on the use	Formworks Pvt. Ltd.
	of high-precision, re- usable, room-sized,	
	steel forms or moulds for monolithic	
	concrete construction	
9	Aluminium formwork system for	Brilliant Etoile
<u> </u>	Monolithia Constant sensitive	
	wonolithic concrete construction	

Technologies Evaluated & Recommended>>. Light Gauge Steel Structures & Pre -engineered Stel structural system

Steel Structures including Light Gauge Steel Structures

THE BASIC STRUCTURE IS FABRICATED USING

- OFactory made light Gauge steel section exclusively or in combination with prefabricated hot rolled steel sections.
- OWalling elements are made of fibre cement boards / EPS Panels or sandwich light weight concrete with suitable insulation

Steel Structures including Light Gauge Steel Structures

- Light Gauge structure alone are suitable upt o G+3 structures.
- In combination with hot rolled section multi storied structures can be erected.

GLOBAL HOUSIN TECHNO CHALLE	G DLOGY NGE INDIA	2	LGS Framing with various walling & roofing options LGS Framing with various walling & roofing options	Housing Pvt. Ltd, Everest Industries Ltd,	ology Challenge - India (GHTC-I)
4		3 4 5	LGS Framing with various walling & roofing options LGS Framing with various walling & roofing options LGS Framing with various	JSW Steel Ltd., Society for Development of Composites Elemente	
Li Si e Si	ght Gauge Stee tructural Syster ngineered Stee tructural Syster	6	Walling & roofing options LGS Framing with various walling & roofing options LGS Framing with various	Designer Homes MGI Infra Pvt. Ltd., RCM Prefab	
		8	walling & roofing options LGS Framing with various walling & roofing options	Pvt. Ltd, Nipani Infra and Industries Pvt. Ltd.,	
		9 10 11	LGS Framing with various walling & roofing options LGS Framing with various walling & roofing actions Prefabricated steel structural	Strawcture Eco Visakha Industries Ltd. RCC Infra	
		12 13	system with Dry wall system as AAC panels, PUF panels etc Hot rolled steel frame with speed floor Hot rolled steel section with AAC	Ventures Ltd. Jindal Steel & Power Ltd. HIL Ltd.	
		14	Panels as floor & slab AAC wall and roof panel system to provide integrated solution. AAC products are reinforced and used in both load and non-load bearing applications	Biltech Building Elements Ltd	
		15	AAC Panels are Wire mesh/ steel reinforced for use as wall & slab. Appears to be non load bearing panels to be used with structural framing.	SCG International India Pvt Ltd	
		16	Precast Light Weight Hollow-core wall Panel is a non-structural construction material with	Pioneer Precast Solutions Private Limited	

Technologies Evaluated & Recommended>>Prefabricated Sandwich Panel system

2. >> EPS Core Based Factory Made Panel System

- Uses combination of Expanded Polystyrene Core (EPS) and High Strength Galvanized Steel Wire Mesh.
- Successfully used in Europe, Eastern Canada, North Eastern USA, China and other Asian countries.
- UK, Ireland, USA and other Countries have also certified the system.

2. >> EPS Core Based Factory Made Panel System

Panels are factory made in controlled environment.

2.

>> EPS Core Based Factory Made Panel System

Advantages

Baupanel technology Expanded Polystyrene panels in position

- ✓ Panels are light weight and easy to erect.
- ✓ Site work is minimum requiring minimum skilled workers
- \checkmark Very suitable for seismic prone areas.
- ✓ No heavy machinery required.
- ✓ Better Thermal & Acoustic behavior.
- ✓ Brings speed & quality.

Sand witch panel system-EPS cement panels

wall & slab with **EPS** Cement sandwich Panel to be used with RCC or Steel structural frame. Load bearing upto G+1 storey

Sand witch panel-Pre-fab PIR (Poly-isocyanurate) based Dry Wall Panel System" as non-load bearing wall.

Global Housing Technology Challenge - India (GHTC-I)

 Reinforced Expanded Polystyrene sheet core Worldhaus EPS Cement sandwich Panel: wall & slab with Bhargav EPS Cement sandwich Panel: wall & slab with Bhargav Infrastructure PCC or Steel structural frame. Load bearing Pvt.Ltd upt 0641 storey EPS Cement sandwich Panel: wall & slab with Rising Japan Infra Protection of the structural frame. Load bearing upt 0641 storey EPS Cement sandwich Panel: wall & slab with Rising Japan Infra Protection of the storey Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slab Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slab Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slab Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slab Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slab Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slab Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slab Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slab Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slab Reinforced Expanded Polystyrene sheet core Beardshell Ltd. Panel with sprayed concrete as wall & slab Pro-fab PIR (Poly-isocyanurate) based Dry Covestro India Pvt. Ltd., Sandwich panels as wall & slab Project Etopia Group 					and the second	Constantiated and subscript	
2EPS Cement sandwich Panel: wall & slab with EPS Cement sandwich Panel to be used with RCC or Steel structural frame. Load bearing upto G+1 storeyInfrastructure Pvt.ttd3EPS Cement sandwich Panel: wall & slab with RCC or Steel structural frame. Load bearing upto G+1 storeyRising Japan Infra Private Limited4Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slabBau Panel Systems India Pvt ttd,5Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slabBK Chemtech Engineering6Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slabMSN Construction7Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slabBeardshell Ltd.8Pre-fab PIR (Poly-isocyanurate) based Dry Wall Panel System" as non-load bearing wall Wall Panel System" as non-load bearing wall Or State Etopia GroupProject Etopia Group	5	1	Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slab	Worldhaus			
3 EPS Cement sandwich Panel: wall & slab with EPS Cement sandwich Panel to be used with RCC or Steel structural frame. Load bearing upto G+1 storey Rising Japan Infra Private Limited 4 Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slab Bau Panel Systems India Pvt Ltd, 5 Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slab BK Chemtech Engineering 6 Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slab MSN Construction 7 Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slab Beardshell Ltd. 8 Pre-fab PIR (Poly-isocyanurate) based Dry Wall Panel System" as non-load bearing wall Covestro India Pvt. Ltd., 9 Sandwich panels as wall & slab Project Etopia Group		2	EPS Cement sandwich Panel: wall & slab with EPS Cement sandwich Panel to be used with RCC or Steel structural frame. Load bearing upto G+1 storey	Bhargav Infrastructure Pvt.Ltd			100000 10000 10000 100000 100000 1000000
4Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slabBau Panel Systems India Pvt Ltd,5Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slabBK Chemtech Engineering6Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slabMSN Construction7Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slabBeardshell Ltd.7Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slabBeardshell Ltd.8Pre-fab PIR (Poly-isocyanurate) based Dry Wall Panel System" as non-load bearing wall Wall Panel System" as non-load bearing wall GroupProject Etopia Group		3	EPS Cement sandwich Panel: wall & slab with EPS Cement sandwich Panel to be used with RCC or Steel structural frame. Load bearing upto G+1 storey	Rising Japan Infra Private Limited			
5Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slabBK Chemtech Engineering6Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slabMSN Construction7Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slabBeardshell Ltd.8Pre-fab PIR (Poly-isocyanurate) based Dry Wall Panel System" as non-load bearing wallCovestro India Pvt. Ltd.,9Sandwich panels as wall & slabProject Etopia Group		4	Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slab	Bau Panel Systems India Pvt Ltd,	1		
6Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slabMSN Construction7Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slabBeardshell Ltd.8Pre-fab PIR (Poly-isocyanurate) based Dry Wall Panel System" as non-load bearing wall Pvt. Ltd.,Covestro India Pvt. Ltd.,9Sandwich panels as wall & slabProject Etopia Group		5	Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slab	BK Chemtech Engineering			
7Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slabBeardshell Ltd.8Pre-fab PIR (Poly-isocyanurate) based Dry Wall Panel System" as non-load bearing wall Pvt. Ltd.,Covestro India Pvt. Ltd.,9Sandwich panels as wall & slabProject Etopia Group		6	Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slab	MSN Construction		H. M	KIN/
8 Pre-fab PIR (Poly-isocyanurate) based Dry Covestro India 9 Wall Panel System" as non-load bearing wall Pvt. Ltd., 9 Sandwich panels as wall & slab Project Etopia Group Group		7	Reinforced Expanded Polystyrene sheet core Panel with sprayed concrete as wall & slab	Beardshell Ltd.		I WHIL	1 and
9 Sandwich panels as wall & slab Project Etopia Group		8	Pre-fab PIR (Poly-isocyanurate) based Dry Wall Panel System" as non-load bearing wall	Covestro India Pvt. Ltd.,		ANA	NA
		9	Sandwich panels as wall & slab	Project Etopia Group		AN AN	

Technology Evaluated and recommended>>-Stay in Place Formwork System

PVC Stay in place formwork

Fast ICF formwork

Stay in Place Formwork System->>Expanded steel panel & Galvanized steel formwork system

Expanded steel panel reinforced with galvanized steel wire struts

Coffer structural stay in place formwork system

GFRG Panel system

Global Housing Technology Challenge - India (GHTC-I)

Stay In Place Formwork System

1	Expanded-Steel Panel reinforced with all- galvanised Steel Wire-Struts serving both as the load- bearing steel structure and as the stay-in-place steel formwork filled with EPS-alleviated concrete	JK Structure
2	Factory made prefab Glass fibre reinforced Gypsum cage panels suitable for wall & slab with reinforcement & concrete as infill as per the requirement	FACT-RCF Building Products Limited
3	Structural Stay In Place Galvanized Steel formwork system for walling with the same bottom single layer formwork for slabs/ in-situ slab	Coffor Construction Technology Pvt.Ltd
4	Factory produced PVC Stay in place formwork with concrete & reinforcement in walling units with cast in-situ RCC Slab	Joseph Jebastin (Novel Assembler)
5	Fully load bearing walls with 150 mm monolithic concrete core sandwiched inside two layers of EPS as walling The forms are open ended hollow polystyrene interlocking blocks which fits together to form shuttering system	Reliable Insupack
6	Ready to use Stay in place polymer formwork, light weight, with flooring slab (combination of ferro cement and natural stone) placed on RCC precast joists)	Kalzen Realty Pvt. Ltd
7	Fast Bloc, Insulated Concrete Form (ICF), acts as formwork for concrete and rebar, Co1oumn/post and beam construction, creating an strong skeleton in the walls.	Fastbloc Building Systems
8	Formwork system "Plaswall with Two fibre cement boards (FCB) & HIMI (High Impact Molded Inserts) bonded between two sheets of FCB in situ and erected to produce a straight-to- finish wall with in-situ concrete	FTS Buildtech Pvt.Ltd

Light House Projects

Hon'ble Prime Minister laid the foundation stone of six LHPs on 01.01.2021 Thank You for Your Kind attention

Any Questions?