

www.magicrete.in

PRECAST BUILDING SYSTEM

- 01 : Kitchen Pod
- 02 : Precast Beam
- 03 : Bathroom Pod
- 04 : Precast Lift Wall
- 05 : Precast Parapet
- 06 : Precast Staircase Wall
- 07 : Solid Concrete Slab
- **08 : Prestressed Slab**
- 09 : Precast Staircase
- 10 : Precast Column
- 11 : Precast Facade
- 12 : Precast Load-Bearing Wall
- 13 : Prestressed Gable End Wall
- 14 : AAC Wall Panel

DISCUSSION POINTS

- What is 3D Modular Precast & Its types
- Why Modular Construction
- How to Modularize
- Production Process
- Transport and Installation Process
- Technology Specifications and Comparison
- Prefabricated Bathroom units (PBUs)
- Case Studies
- QnA

INTRODUCING 3rd GEN CONSTRUCTION TECHNOLOGY

Lego like plug and play modules
Cast and finished in factory
Assembled on site
90% work done in factory

Types of Modular Construction

WHY MODULAR **CONSTRUCTION ?**

Construction industry lags in Labour Productivity ✓ Needs Industrialized Technologies Factory based approach, just like automobiles Prefab/Volumetric Construction is the solution to fill this Gap.

Productivity of the U.S. Construction Industry:

- Issues, Challenges, and Opportunities." Building and Fire Research Laboratory, National Institute of Standards and Technology: Gaithersburg, MD, 2008.

WHY MODULAR CONSTRUCTION ?

OTHER BENEFITS

- Reduce labour cost
- Less material waste

- Less site disturbance
- **Flexible & adaptable**
- Movable and permanentBuilding options

EARTHQUAKE RESISTANT DESIGN

Specially designed inter-pod connections for high seismic zones

HOW TO MODULARIZE ?

MODULARIZATION OF FLOOR PLAN

KEY PLAN

MODULARIZATION OF FLOOR PLAN

Not all areas are modular

✓ It's a combination of both 3D modular and 2D

elements

We have to find the right balance to optimize the structure stability, productivity & erection ease

) Modules should be easy to handle and transport

Image courtesy : United Tech

PRODUCTION PROCESS FLOW

Steel Processing Area

<u>3D Mould Preparation</u>

Casting of Modules

Tiling Works

MEP Works

TYPES OF PODS BY FORM

Walls + Roof + Slab

- Pros 100% Finishing @ Factory, limited structural connections
- Cons More weight, High precision required during erection, difficult to cast, Repeating Floor/Slab

Walls + Roof

- Pros Lesser weight, easy to cast, Easy to lift
- Cons More weight, High precision required during erection

Walls + Floor

- Pros Lesser weight, Tiling & MEP works @ Factory
- Cons More weight, High precision required during erection, difficult to lift

CASTING PROCESS- BY ASSEMBLING 2D WALLS

ADVANTAGES

Most flexible for different precast elements

- High automated working steps
- High production output
- Pre-defined working position

DISADVANTAGES

- High investment
- Large working space

Additional working step -> assembling of the precast parts (PBU)

Source: Volert

CASTING PROCESS- 2 PARTS SYSTEM

ADVANTAGES

Flexible for different precast design

- Small working space
- Few connections
- Very rigid, almost monolithic
- Production of several elements in one mould

DISADVANTAGES

- Two different moulds
- Additional working step -> assembling of the precast parts (PBU)*
- Needs to be turned (depending on design)

Source: Volert

CASTING PROCESS- SINGLE CAST

ADVANTAGES

- Monolithic element
- No connections
- Small working space
- Pre-defined Mould configuration

DISADVANTAGES

- Inflexible for different elements
- High Investment (shrinkage core)
- Needs to be turned (depending on design)
- Cleaning / mechanical parts

distant day

-

INSTALLATION

INSTALLATION

TRANSPORT & INSTALLATION

TRANSPORT & INSTALLATION

TECHNOLOGY COMPARISION

Parameter	(3D Modular Precast)
Resource Efficiency	Excellent (up to 60% less manpower)
Time Reduction	50% lesser
Cost Reduction	0.85 x
Safety	Low risk to manpower (only 10% of work on site)
Sustainability	High (uses less & recyclable materials)
Functionality Parameters	
Thermal performance	Provides for use of light weight concrete /polystyrene infill
Seismic Stability	High (suitable upto zone 4)
Acoustic	>45dB sound reduction for 100mm wall
Water Tightness	High due to lesser joints

Conventional Construction		
Poor		
-		
1.00 x		
High Risk of injury to manpower		
Low		
Normal		
Medium		
>40-45dB average sound reduction		
Depends on workmanship		

TECHNOLOGY COMPARISION

Factors	MagicPod (3D Precast Modular)	Light Gauge Steel Modular	2D Precast
%age Industrialization	90%	60 - 90%	30%
Durability	High	Medium	High
Life Cycle Cost	Low	High	Medium
Strength	High	Low	High
Automation Possibility	High	Low	Medium
Finishing @ Plant	100%	60 - 80%	0%
Weight of Modules	High	Less	Less
MEP	Concealed	Exposed/Concealed	Concealed
Scalability	Very high	Low	Medium
Speed of Exec.	Very high	High	Medium
Mandays for 300 Sq. Ft. Work		22	18

60% less manpower

Reinforced EPS Wall Panel	Monolithic Concrete Const.
10%	0%
Medium	High
Medium	Low
Medium	Medium
Low	Low
0%	0%
Less	Less
Concealed	Concealed
0%	Medium
0%	Medium
34	31

HOW CAN CONVECTIONAL BUILDING BENEFIT FROM MODULAR CONSTRUCTION

By Using Bathroom Pods

Bathroom is a repeatable component – hence can be modularized.

Involves all trades – RCC, Waterproofing, Tiling, Plumbing, Joinery in a cramped place of 50–100 sft, hence a critical job in project completion. Should be done offsite in parallel to building super structure construction.

Man hour density is highest in bathrooms. Hence ideal for modularization

Fixed Cost - no cost overruns.

- Quality can be easily controlled in a factory environment rather than on site.
- **Ready to use** fully finished bathrooms ready to use post installation.

TYPES OF PBUs

Normal Concrete Pod

Lightweight Concrete Pod

Reasons for Adopting Bathroom Pods:

13 trades are done offsite, 40 % manpower reduction, 20% faster construction

Drywall Pod

INSTALLATION METHODS

CRITICAL PATH INSTALLATION : DROP IN

- Suitable for concrete type PBU
- Co-ordination is critical
- Protection of finishes is a challenge

NON-CRITICAL PATH INSTALLATION : SLIDE IN

 Suitable for non- concrete type PBU • Able to finish with architectural works and fittings

MODULAR BUILDINGS - HISTORY

Among the earliest examples of prefabrication in during Britain's Great Exhibition of 1851, when the Crystal Palace was constructed in a few months and assembled using a series of prefabricated parts. The exhibit was also taken apart after the event and reassembled at another site. This is the precursor to modular or factory-based fabrication of buildings

In the 1900s (1922) the United States entered 14 the market when the Sears Roebuck Company so prefabricated homes via mail order. The purchaser would receive a kit of parts that assembled onsite to build the home

The Hilton Palacio del Rio Hotel was among the first concrete high rise modular buildings in the world. The project was across from the Texas World's Exposition of 1968, the 500-room hotel was designed, completed and occupied in an unprecedented period of 202 working days. The hotel's room modules were pre-cast from light-weight structural concrete. Before arriving on the construction site, each room was fully decorated, including color TV, AM/FM radios, beds, carpeting, and all FF&E. The units are 32 feet 8 inches and 29 feet 8 inches long, 13 feet wide and 9 feet 6 inches high. They weigh 35 tons each and were manufactured at a plant located eight miles from the project site. All units were installed in 46 days.

MODULAR BUILDINGS - HISTORY

Habitat 67, Built in 1967 in Montreal, Qubec, Canada. Habitat 67 comprises 354 identical, prefabricated concrete forms arranged in various combinations, reaching up to 12 stories in height

Nakagin Capsule Tower, Completed in just 30 days in 1972, The building is composed of two interconnected concrete towers, respectively eleven and thirteen floors, which house 140 selfcontained prefabricated capsules

MODULAR BUILDINGS - NOW

The Modules, Philadelphia, Constructed in 2010 using Wooden based modules, approx. 80,000 and 160 bed.

high.

2011, Victoria Hall, Wembley, UK. 19 story

CASE STUDY - SINGAPORE

CASE STUDY - SINGAPORE

CASE STUDY - AUSTRALIA

SOHO Towers, Darwin Australia. 29 story high. The modules were completed & Finished in Ningbo, China & shipped to Darwin, Australia.

CASE STUDY - INDIA

3RD GEN CONSTRUCTION TECHNOLOGY

- Lego like plug and play modules
- Cast and finished in factory
- Assembled on site
- 90% work done in factory

GLOBAL HOUSING TECHNOLOGY CHALLENGE INDIA

- Location Ranchi

- No. of Homes to be built 1008
- No. of Buildings 7 x G+8 floors •

 Magicrete wins the Global Housing Technology Challenge • Organized by the Ministry of Housing & Urban Affairs .

• Client - Ministry of housing & Urban Affairs • Time Period - 3 months planning + 12 months execution • Technology - 3D Modular Precast (MagicPod)

POD APPLICATION

HOTELS

COMMERCIAL

HOSPITALS

OFFICES

VILLAS

RESIDENTIAL

SCHOOLS

ESTEEMED CLIENTELE

THANK YOU

Magicrete Building Solutions Pvt Ltd Siddharth Sharma 9967870753 Siddharth.Sharma@magicrete.in

WHO WE ARE ?

"We help people build their homes **better, faster and cheaper** by using innovative construction technologies".

More than a decade of innovation and continuing.

The largest manufacturer of AAC Blocks in India (installed capacity of **13,00,000CBM/annum**) near high growth markets of West and North

- **Seven lacs+** homes built over the past decade using Magicrete products.
- Motilal Oswal Private Equity (2013) & India SME (2023) invested in Magicrete.
- Launch of **Magicrete AAC Wall Panels** the next significant shift in wall construction built using European Technology.

GROWTH STORY

Sourabh Bansal, Puneet Mittal, and Sidharth Bansal, Cofounders, Magicrete spot a promising market for AAC blocks to replace the \$ 10 bn industry of Red Clay Bricks.Sets up first AAC blocks factory of 150,000 CBM at Surat, Gujarat.

Magicrete increases its annual capacity to **400,000 CBM,** making the Surat plant India's Largest single-location AAC

plant.

Additional Motilal Oswal Private Equity invest in Magicrete. Set up another AAC

another **AAC blocks factory** on **4,00,000 CBM** at Jhajjar, Haryana

2014 Launch of Ready mix plaster and Wall putty and Precast

59

Won Global Housing Technology Challenge (GHTC) organized by MoHUA to build 1000+ homes in Ranchi with 3D Modular Technology. Launch of Tile & stone fixing solutions and Waterproofing solutions.

Commision new AAC Unit at Wada, Maharashtra making **Magicrete** largest producer AAC Blocks with an annual capacity of **13,00,000 CBM**

India SME, a PE fund Invests in Magicrete

BEST IN CLASS PRODUCTS

First AAC Company to provide complete Walling Solution

ISI Marked

Grade 1 Material

Material, 33% Higher Strength

((•))

Range of Products

WORLD CLASS INFRASTRUCTURE

Present in **18 states**, top **120 Indian Cities** through more than **5000** retail outlets.

Operational excellence achieved through **TPM**, use of **BSC** as a strategic tool, and **SOP** driven systems.

India's top AAC players with **13,00,000 CBM** annual installed capacity.

Strategically located within 250kms of major urban centres and thermal power plants.

WHAT WE DO ?

- AAC BLOCKS
- AAC WALL PANELS
- BLOCK JOINING MORTAR
- READYMIX PLASTER
- WALL PUTTY

- TILE & STONE ADHESIVES
- EPOXY & CEMENTITIOUS GROUTS
- TILE & STONE CARE
- WATERPROOFING

- PRECAST BUILDING SYSTEM
- PRECAST INFRASTRUCTURE PRODUCTS

